

Val-d'Or Head Office

560, 3^e Avenue Val-d'Or (Québec) J9P 1S4

Quebec Office

725 Boulevard Lebourgneuf Suite 312-313-317 Quebec (Quebec) G2J 0C4 **Montreal Office**

859 Boulevard Jean-Paul-Vincent Suite 201 Longueuil (Quebec) J4G 1R3 Telephone: 819-874-0447 Toll free: 866-749-8140 Email: info@innovexplo.com Website: www.innovexplo.com

NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada

Prepared for

Wallbridge Mining Company Limited 129 Fielding Road Lively (Ontario) P3Y 1L7

Project Location

Latitude: 50°00' North; Longitude: 78°54' West Province of Quebec, Canada

Prepared by:

Carl Pelletier, P.Geo. Vincent Nadeau-Benoit, P.Geo. Simon Boudreau, P.Eng. Marc R. Beauvais, P.Eng.

InnovExplo Inc.
Val-d'Or (Quebec)

Effective Date: March 3, 2023 Signature Date: March 3, 2023

SIGNATURE PAGE - INNOVEXPLO

NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada

Prepared for Wallbridge Mining Company Limited 129 Fielding Road Lively (Ontario) P3Y 1L7

Project Location

Latitude: 50°00' North; Longitude: 78°54' West Province of Quebec, Canada

Effective Date: March 3, 2023

(Original signed and sealed)

Carl Pelletier, P.Geo. InnovExplo Inc. Val-d'Or (Quebec)

(Original signed and sealed)

Vincent Nadeau-Benoit, P.Geo. InnovExplo Inc. Val-d'Or (Quebec)

(Original signed and sealed)

Simon Boudreau, P.Eng. InnovExplo Inc. Trois-Rivières (Quebec)

(Original signed and sealed)

Marc R. Beauvais, P.Eng. InnovExplo Inc. Val-d'Or (Quebec)

Signed at Val-d'Or on March 3, 2023

Signed at Val-d'Or on March 3, 2023

Signed at Trois-Rivières on March 3, 2023

Signed at Val-d'Or on March 3, 2023

CERTIFICATE OF AUTHOR – CARL PELLETIER

I, Carl Pelletier, P.Geo. (OGQ No. 384, PGO No. 1713, EGBC No. 43167 and NAPEG No. L4160), do hereby certify that:

- 1. I am a professional geoscientist and Co-President Founder of InnovExplo Inc., located at 560 3e Avenue, Val-d'Or, Quebec, Canada, J9P 1S4.
- 2. This certificate applies to the report entitled "NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report") with an effective date of March 3, 2023, and a signature date of March 3, 2023, prepared for Wallbridge Mining Company Limited (the "issuer").
- 3. I graduated with a bachelor's degree in Geology (B.Sc.) from Université du Québec à Montréal (Montreal, Quebec) in 1992. I initiated a master's degree at the same university for which I completed the course program but not the thesis.
- 4. I am a member in good standing of the Ordre des Géologues du Québec (OGQ licence No. 384), the Association of Professional Geoscientists of Ontario (PGO No. 1713), the Association of Professional Engineers and Geoscientists of British Columbia (EGBC No. 43167) and the Northwest Territories Association of Professional Engineers and Geoscientists (NAPEG No. L4160).
- 5. My relevant experience includes a total of 30 years since graduating from university. My mining expertise has been acquired at the Silidor, Sleeping Giant, Bousquet II, Sigma-Lamaque and Beaufor mines. My exploration experience has been acquired with Cambior Inc. and McWatters Mining Inc. I have been a consulting geologist for InnovExplo Inc. since February 2004.
- 6. I have read the definition of a "qualified person" set out in National Instrument 43-101/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of that instrument.
- 7. I have visited the property on July 5, 2022, for the purpose of this Technical Report.
- 8. I am a co-author and share responsibility for all items of the Technical Report.
- 9. I have had prior involvement with the property that is the subject of the Technical Report as an independent qualified person for three (3) previous mineral resource estimates and the supporting NI 43-101 technical reports.
- 10. I am independent of the issuer in accordance with the application of section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.
- 12. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Signed this 3rd day of March 2023 in Val-d'Or, Quebec, Canada.

(Original signed and sealed)

Carl Pelletier, P.Geo. InnovExplo Inc. carl.pelletier@innovexplo.com.

CERTIFICATE OF AUTHOR - VINCENT NADEAU-BENOIT

I, Vincent Nadeau-Benoit, P.Geo. (OGQ No. 1535, EGBC No. 54427, NAPEG No. L4154), do hereby certify that:

- 1. I am a professional geoscientist, employed as Senior Geologist in Mineral Resources Estimation for InnovExplo Inc., located at 560, 3^e Avenue, Val-d'Or, Quebec, Canada, J9P 1S4.
- 2. This certificate applies to the report entitled "NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report"), with an effective date of March 3, 2023 and a signature date of March 3, 2023, prepared for Wallbridge Mining Company Limited (the "issuer").
- 3. I graduated with a bachelor's degree in Earth and Atmospheric Sciences (Geology) from Université du Québec à Montréal (Montreal, Quebec) in 2010.
- 4. I am a member in good standing of the Ordre des Géologues du Québec (OGQ licence No. 1535), the Association of Professional Engineers and Geoscientists of British Columbia (EGBC, No. 54427) and the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG No. L4154).
- 5. I have practiced my profession continuously as a geologist for a total of 10 years since graduating from university. During that time, I have been involved in mineral exploration and mine geology projects for precious and base metal properties in Canada. I acquired my expertise with Royal Nickel Corporation and Glencore and have been a consulting geologist for InnovExplo Inc. since August 2018.
- 6. I have read the definition of "qualified person" set out in National Instrument/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of that instrument.
- 7. I visited the property on August 16 and 17, 2021, for the purpose of this Technical Report.
- 8. I am a co-author and share responsibility for all items of the Technical Report.
- 9. I have not had any prior involvement with the property that is the subject of this Technical Report.
- 10. I am independent of the issuer in accordance with the application of section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.
- 12. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Signed this 3rd day of March 2023 in Val-d'Or, Quebec, Canada.

(Original signed and sealed)

Vincent Nadeau-Benoit, P.Geo. InnovExplo Inc. vincent.nadeau-benoit@innovexplo.com

CERTIFICATE OF AUTHOR – SIMON BOUDREAU

- I, Simon Boudreau, P. Eng. (OIQ No.132 338), do hereby certify that:
 - 1. I am a Professional Engineer employed as Senior Mining Engineer with the firm InnovExplo Inc., located at 560, 3e Avenue, Val-d'Or, Québec, Canada, J9P 1S4.
 - 2. This certificate applies to the report entitled "NI 43 101 Technical Report for the Detour Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report"), with an effective date of March 3, 2023 and a signature date of March 3, 2023, prepared for Wallbridge Mining Company Limited (the "issuer").
 - 3. I graduated with a Bachelor's degree in mining engineering from Université Laval (Québec, Québec) in 2003.
 - 4. I am a member in good standing of the Ordre des Ingénieurs du Québec (No:132338).
 - 5. My relevant experience includes a total of nineteen (19) years since my graduation from university. I have been involved in mine engineering and production at Troilus mine for four (4) years, HRG Taparko mine for four (4) years, Dumas Contracting for three (3) years. I have also worked as independent consultant for the mining industry for five (5) years and with InnovExplo for three (3) year. As consultant I have been involved in many base metals and gold mining projects.
 - 6. I have read the definition of "qualified person" set out in the NI 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and certify that, by reason of my education, affiliation with a professional association, and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of NI 43-101.
 - 7. I have not visited the Detour Fenelon Gold Trend Property for the purpose of the Technical Report.
 - 8. I am responsible for the preparation of section 14.12. I am also co-author of and share responsibility for sections 1, 2, 14, 25, 26 and 27.
 - 9. I am independent of the issuer applying all the tests in section 1.5 of NI 43101.
 - 10. I have had prior involvement with the property that is the subject of the Technical Report by overseeing engineering studies.
 - 11. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.
 - 12. As of the effective date of the Technical Report, to the best of my knowledge, information and belief, the sections of the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed this 3rd day of March 2023 in Trois-Rivières, Québec, Canada.

(Original signed and sealed)

Simon Boudreau, P.Eng. InnovExplo Inc. simon.boudreau@innovexplo.com

CERTIFICATE OF AUTHOR - MARC R. BEAUVAIS

I, Marc R. Beauvais, P.Eng., (OIQ No. 108195, PEO No. 100061114), do hereby certify that:

- 1. I am currently employed as a senior mining engineer with InnovExplo Inc., Consulting Firm in Mines and Exploration, 560, 3e Avenue, Val-d'Or, Québec, Canada, J9P 1S4.
- 2. This certificate applies to the report entitled "NI 43 101 Technical Report for the Detour Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report"), with an effective date of March 3, 2023 and a signature date of March 3, 2023, prepared for Wallbridge Mining Company Limited (the "issuer").
- 3. I have practiced my profession in mining operation, construction and management for more than 30 years. I have experience in gold, base metals and diamonds. I have worked for Aur Resources (1986, 1987, 1994-1998), Agnico-Eagle Mines Ltd (1993-94), McWatters Mines (1998- 2000), Promine Software Inc. (2000-2001). I have founded and operated my own consulting firm (Promine Consultant Inc.) from 2001 to 2005. I have been a Business Associate of Genivar Inc from 2005 to 2009 where I have supervised a staff of nearly 30 professionals directly involved in every aspect of the mineral industry. I have worked for a foreign mining company (Aimroc) in Azerbaijan from 2009 to 2010. In 2012, I have founded and managed Minrail Inc who developed a patented, fully integrated mining system designed specifically to extract the ore of shallow dipping deposit for underground mines. I have worked mostly in Canada and abroad. I have multiple specializations in computer modeling in mine planning and construction.
- 4. I am a member in good standing of the Orde des Ingénieurs du Québec (OIQ No. 108195) and the Professional Engineers of Ontario (PEO No. 100061114).
- 5. I have graduated in 1991, at Laval University located in Ste-Foy (Québec) with a B.Sc. in Mining Engineering.
- 6. I have visited the property on July 5, 2022, for the purpose of this Technical Report.
- 7. I am responsible for the preparation of section 14.12. I am also co-author of and share responsibility for sections 1, 2, 14, 25, 26 and 27.
- 8. I have had prior involvement with the property that is the subject of the Technical Report by overseeing engineering studies.
- 9. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 10. I am independent of the issuer in accordance with the application of Section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F1, and the items of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 12. I have read the definition of "qualified person" set out in Regulation 43-101 /NI 43-01 and certify that by reason of my education, affiliation with a professional association (as defined in Regulation 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of Regulation 43-101.

Signed this 3rd day of March 2023 in Val-d'Or, Quebec, Canada.

(Original signed and sealed)

Marc R. Beauvais, P.Eng. InnovExplo Inc. marc.beauvais@innovexplo.com

TABLE OF CONTENTS

SIGNA	ATURE PAGE – INNOVEXPLO	ii
CERT	IFICATE OF AUTHOR – CARL PELLETIER	iii
CERT	IFICATE OF AUTHOR - VINCENT NADEAU-BENOIT	iv
CERT	IFICATE OF AUTHOR – MARC R. BEAUVAIS	vi
1.	SUMMARY	
1.1	Costs Estimate for Recommended Work	
2.	INTRODUCTION	23
2.1	Terms of Reference	
2.2	Report Responsibility and Qualified Persons	24
2.3	Site Visit	
2.4	Effective Date	
2.5 2.6	Sources of Information Currency, Units of Measure, and Acronyms	
	·	
3.	RELIANCE ON OTHER EXPERTS	33
4.	PROPERTY DESCRIPTION AND LOCATION	
4.1	Location	
4.2	Mining Title Status	
4.3 4.4	Acquisition of the Detour-Fenelon Gold Trend land package	
4.5	Previous Agreements and Encumbrances – Mineral Royalties	
4.6	Permits	
4.7	Communication and Consultation with Communities	
5.	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	41
5.1	Accessibility	
5.2	Climate	
5.3	Local Resources	
5.4	Infrastructure	
5.5	Physiography	
6.	HISTORY	
6.1	Fenelon Block	
6.2 6.3	Grasset Block	
6.4	Doigt Block	
6.5	Harri Block	
6.6	Detour East Block	
6.7	Casault Block	
6.8	Nantel Block	70
7.	GEOLOGICAL SETTING AND MINERALIZATION	
7.1	Regional Geology	
7.2 7.3	Local Geology	
	Geology of the Property	
	3.2 Martiniere Block	
7.4	Mineralization	
	.4.1 Fenelon Block	
7	4.2 Grasset Block	86

	Martiniere Block Other claim blocks	
8. DEF 8.1	POSIT TYPES Orogenic Gold	
8.2	VMS Cu-Zn-(Ag-Au)	
	, ,	
	PLORATION	
9.1	Surface Exploration	
9.1.1 9.1.2	Historical core resampling Induced Polarization Survey	
9.1.2	Fenelon, Casault, Harri and Grasset Airborne Magnetic Surveys	
9.1.4	Fenelon, Grasset and Casault Biogeochemical Survey (Tree Bark Sampling)	
9.1.5	Casault and Casault East Mapping Program	
9.1.6	Casault East and Harri Till Sampling Program	
9.1.7	Magnetic Gradiometer Survey	
9.1.8	2022 Field Program on Detour East Block (Completed by Agnico)	100
9.2	Underground Exploration	
9.2.1	Bulk Sample	
9.2.2	Exploration Drift	
9.2.3	Underground Geological Mapping and Sampling	102
10. DRI	LLING	103
10.1	Drilling Methodology	103
10.2	Core Logging Procedures	
10.3	2017 to 2022 Drilling Programs	
	2017 Drilling Program	
	2018 Drilling Program	
	2019 Drilling Program	
	2021 Drilling Program (Completed by the Issuer)	
	2021 Drilling Program (Detour East Block - Completed by Kirkland Lake)	
	2022 Drilling Program	
	IPLE PREPARATION, ANALYSES AND SECURITY	
11. SAN	Fenelon Block	
	Core Handling, Sampling and Security	
	Laboratory Accreditation and Certification	
	Laboratory Preparation and Assays	
	Quality Assurance and Quality Control	
11.2	Martiniere Block	125
	Core Handling, Sampling and Security	
	Laboratory Accreditation and Certification	
	Laboratory Preparation and Assays	
	Quality Assurance and Quality Control	
	Conclusions on QA/QC for the Martiniere Block	
12. DA7	TA VERIFICATION	132
12.1	Drill Hole Database	
12.2	Site Visit	
12.3	Comments	135
13. MIN	ERAL PROCESSING AND METALLURGICAL TESTING	136
13.1	Fenelon Deposit	136
	Treatment and results of the 2018 and 2019 bulk samples (Gabbro Zones)	
	Metallurgical testwork on Tabasco-Cayenne and Area 51 zones	
13.1.3	Conclusions for the Fenelon Gold Mine Deposit	141

13.2		
	3.2.1 2012 and 2013 ALS Metallurgy	
	3.2.2 2014 SGS Minerals Services	
13	3.2.3 2015 Blue Coast	145
14.	MINERAL RESOURCE ESTIMATES	148
14.1	Methodology	148
14.2		148
	4.2.1 Geological Model	
	4.2.2 Voids Model	
	4.2.3 High-grade Capping	
14	4.2.4 Density	158
	4.2.5 Compositing	
	4.2.6 Block Model4.2.7 Variography and Search Ellipsoids	
14	4.2.8 Grade Interpolation	102
	4.2.9 Block Model Validation	
	4.2.10 Mineral Resource Classification	
-	4.2.11 Economic Parameters and Cut-Off Grade	
14	4.2.12 Mineral Resource Estimate	
15.	MINERAL RESERVE ESTIMATES	192
16.	MINING METHODS	102
		_
17.	RECOVERY METHODS	192
18.	PROJECT INFRASTRUCTURE	192
19.	MARKET STUDIES AND CONTRACTS	192
20.	ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT	192
21.	CAPITAL AND OPERATING COSTS	192
22.	ECONOMIC ANALYSIS	192
23.	ADJACENT PROPERTIES	193
24.	OTHER RELEVANT DATA AND INFORMATION	195
25.	INTERPRETATION AND CONCLUSIONS	196
26.	RECOMMENDATIONS	199
26 .1		
27.		
27. 27.1		
	` '	
APPE	NDIX I – LIST OF MINING TITLES	219

LIST OF FIGURES

Figure 4.1 – Location of the Property in the Province of Quebec39	5
Figure 4.2 – Map of claim blocks comprising the Property30	6
Figure 5.1 – Access and waterways of the Detour-Fenelon Gold Trend Property and the surrounding region4	
Figure 7.1 – Stratigraphic map of the Abitibi Greenstone Belt72	2
Figure 7.2 – Geology of the Harricana-Turgeon Belt, northwestern Abitibi Subprovince74	4
Figure 7.3 – Geology of the Fenelon Block7	7
Figure 7.4 – Geology of the Martiniere Block79	9
Figure 7.5 – Geology and mineralized zones of the Fenelon Gold System8	1
Figure 7.6 – Cross-section A-A' (looking west) of the Area 51 and Tabasco-Cayenne zones8	
Figure 7.7 – Cross-section B-B' (looking west) of the Area 51 and Tabasco-Cayenne zones8	5
Figure 7.8 – Geology and mineralized zones of the Martiniere Gold System8	8
Figure 7.9 – Long section of the Martiniere West Trend89	9
Figure 8.1 – Types of gold deposits and their inferred deposit clan9	
Figure 8.2 – Types of VMS mineralization and tectonic settings9	
Figure 9.1 – 3D view and results of the 2018-2019 bulk sample10	
Figure 10.1 – Holes drilled on the Fenelon Block from 2017 to 202210	
Figure 10.2 – Holes drilled by Wallbridge on the Martiniere Block in 2021-202210	
Figure 10.3 – Holes drilled by Wallbridge on the Casault Block in 2021-202210	
Figure 10.4 – Holes drilled by Wallbridge on the Grasset Block in 2021-2022109	9
Figure 10.5 – Holes drilled by Kirkland Lake on the Detour East Block in 2021110	
Figure 11.1 – Chart detailing the results by SGS (ICP finish) of OREAS 231 from January 1, 2022 to December 14, 2022	
Figure 11.2 – Chart detailing the results by Bureau Veritas of OREAS 238 from September 1 2021 to December 14, 2022	
Figure 11.3 – Chart detailing the results (53) by SGS (umpire laboratory for Bureau Veritas original assay results) of duplicates taken at the pulverising stage (pulp duplicates) received between September 1, 2021 to December 14, 2022	n
Figure 12.1 – QPs site visits to the Fenelon Camp13	5
Figure 13.1 – Proposed flotation and cyanidation flowsheet for the Bug Composite14	7
Figure 14.1 – Surface plan view of the Fenelon deposit showing the validated drill holes used for the 2023 MRE	r
Figure 14.2 – Surface plan view of the Martiniere deposit showing the validated drill hole used for	r

Figure 14.3 – Inclined view of the Fenelon model looking north: envelopes (left) and high-grade zones (right)
Figure 14.4 – Inclined view of the Martiniere model looking north: envelopes (left) and high-grade zones (right)
Figure 14.5 – Longitudinal section of the voids for the Fenelon deposit, looking north153
Figure 14.6 – Example of graphs (Cayenne 1) supporting the established capping value for the Fenelon deposit
Figure 14.7 – Example of graphs (BLS Lower Contact) supporting the established capping value for the Martiniere deposit
Figure 14.8 – Variograms for the Cayenne 1 HG Zone163
Figure 14.9 – Long section of the ellipsoid radii and wireframe for the Cayenne 1 HG Zone 164
Figure 14.10 – Variograms for the BLS Lower Contact HG Zone165
Figure 14.11 – Long Section of the ellipsoid radii and wireframe for the BLS Lower Contact HG Zone
Figure 14.12 – Visual validation comparing drill hole composites and block model grade values (example of Cayenne 1 HG Zone, Fenelon deposit)178
Figure 14.13 – Visual validation comparing drill hole composites and block model grade values (example of BLS Lower Contact HG Zone, Martiniere deposit)179
Figure 14.14 – High-grade zones swath plot comparison of block estimates along the X-axis (Fenelon deposit)
Figure 14.15 – High-grade zones swath plot comparison of block estimates along the X-axis (Martiniere deposit)
Figure 14.16 – Classified mineral resources within the constraining volumes for the Fenelon deposit
Figure 14.17 – Classified mineral resources within the constraining volumes for the Martiniere deposit
Figure 23.1 – Adjacent properties

LIST OF TABLES

Table 2.1 – List of Acronyms	26
Table 2.2 – List of units	29
Table 2.3 – Conversion Factors for Measurements	32
Table 6.1 – Historical work on the Fenelon Block	44
Table 6.2 – Historical work on the Grasset Block	49
Table 6.3 – Historical work on the Martiniere Block	55
Table 6.4 – Historical work on the Doigt Block	59
Table 6.5 – Historical work on the Harri Block	60
Table 6.6 – Historical work on the Detour-East Block	63
Table 6.7 – Historical work on the Casault Block	67
Table 7.1 – Summary of significant mineralization found on other claim blocks	90
Table 10.1 – Summary of 2017 to 2022 drilling programs	105
Table 10.2 – Significant results of the 2017 drilling program	110
Table 10.3 – Significant results of the 2018 drilling program	111
Table 10.4 – Significant results of the 2019 drilling program	112
Table 10.5 – Significant results of the 2020 drilling program	113
Table 10.6 – Significant results of the 2021 drilling program	114
Table 10.7 – Significant results of the 2022 drilling program	117
Table 11.1 – Results of standards received from September 1, 2021, to December 31, 2021 and Bureau Veritas)	•
Table 11.2 – Results of standards received from January 1, 2022, to December 14, 2022 and Bureau Veritas)	
Table 11.3 – Results of blanks received from September 1, 2021, to December 14, 2022	125
Table 11.4 – Results of standards received from September 1, 2021, to December 14, 2022 and Bureau Veritas)	-
Table 11.5 – Results of blanks received from September 1, 2021, to December 14, 2022	130
Table 12.1 – Results of the independent re-sampling of material from the Fenelon deposit	134
Table 13.1 – Summary of the results for the 2018 and 2019 bulk samples	137
Table 13.2 – Average recovery per stage and average leach time	137
Table 13.3 – Results of SGS' 2020 metallurgical testwork (Area 51 and Tabasco zones)	139
Table 13.4 – Results of SGS' 2014 metallurgical testwork (from DiLauro and Dymov, 2014)	144
Table 13.5 – Flotation metallurgical balance summary	144
Table 13.6 – Metallurgical balance from separate concentrate and tails leach option (Martin, 2	2015) 146

Table 14.1 – Summary statistics for the drill hole raw and capped assays for the Fenelon depos
Table 14.2 – Summary statistics for the drill hole raw and capped assays for the Martiniere depos
Table 14.3 – Summary of density measurements for the Fenelon deposit15
Table 14.4 – Summary of density measurements for the Martiniere deposit15
Table 14.5 – Summary statistics for the composites of the Fenelon deposit16
Table 14.6 – Summary statistics for the composites of the Martiniere deposit16
Table 14.7 – Properties of block models162
Table 14.8 – Estimation parameters for the Fenelon deposit16
Table 14.9 – Estimation parameters for the Martiniere deposit173
Table 14.10 – Input parameters used to calculate the cut-off grades183
Table 14.11 – Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate (by deposit) 186
Table 14.12 – Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate –Fenelon deposit b zone18
Table 14.13 – Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate –Martiniere depos by zone18
Table 14.14 – Gold price sensitivity analysis for the Detour-Fenelon Gold Trend 2023 MRI (Fenelon Deposit)190
Table 14.15 – Gold price sensitivity analysis for the Detour-Fenelon Gold Trend 2023 MRI (Martiniere Deposit)19
Table 24.1 – Bulk sample results19
Table 25.1 – Risks for the Property19
Table 25.2 – Opportunities for the Property198
Table 26.1 – Estimated Costs for the Recommended Work Program20

1. SUMMARY

Introduction

Wallbridge Mining Company Limited ("Wallbridge" or the "issuer") retained InnovExplo Inc. ("InnovExplo") to prepare a technical report (the "Technical Report") to support the results of the updated mineral resource estimates for the Fenelon and Martiniere deposits (combined, the "Detour-Fenelon Gold Trend 2023 MRE" or "2023 MRE") on the issuer's Detour-Fenelon Gold Trend land package (the "Property"). The Technical Report was prepared in accordance with Canadian Securities Administrators' National Instrument 43 101 Standards of Disclosure for Mineral Projects ("NI 43 101") and Form 43 101F1. Attila Péntek, VP Exploration of Wallbridge, assigned the mandate.

InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Quebec.

Wallbridge is a Canadian mining company trading publicly on the Toronto Stock Exchange ("TSX") under the symbol WM and on the United States OTCQX Best Market ("OTCQX") under the symbol WLBMF.

Contributors

This Technical Report was prepared by InnovExplo employees Carl Pelletier, (P.Geo.), Co-President Founder of InnovExplo, Vincent Nadeau-Benoit (P.Geo.), Senior Geologist in Mineral Resources Estimation, Simon Boudreau (P.Eng.), Senior Mining Engineer, Marc R. Beauvais (P. Eng.), Senior Mining Engineer. All are independent and qualified persons ("QPs") as defined by NI 43 101.

Mr. Pelletier is a professional geologist in good standing with the OGQ (No. 384), PGO (No. 1713), EGBC (No. 43167) and NAPEG (No. L4160). He is co-author of the Technical Report and share responsibility for all items.

Mr. Nadeau-Benoit is a professional geologist in good standing with the OGQ (No. 1535), EGBC (No. 54427) and NAPEG (No. L4154). He is co-author of the Technical Report and share responsibility for all items.

Mr. Boudreau is a professional engineer in good standing with the OIQ (licence No. 132 388). He is responsible for the preparation of section 14.12. He is also co-author of and share responsibility for sections 1, 2, 3, 14, 25, 26 and 27.

Mr. Beauvais is a professional engineer in good standing with the OIQ (licence No. 108195) and the PEO (licence No. 100061114). He is responsible for the preparation of section 14.12. He is also co-author of and share responsibility for sections 1, 2, 3, 14, 25, 26 and 27.

Property Description and Location

The Property is located in the Nord-du-Québec administrative region of the Province of Quebec, Canada, approximately 75 km west-northwest of the town of Matagami.

The Property covers 830.82 km², extending 97 km east-west and 20 km north-south. The coordinates of the approximate centroid are 78°53'33"W and 49°59'49"N (UTM: 651048E and 5540489N, NAD 83, Zone 17). The Property overlies the townships of Manthet,

Martigny, La Martinière, Jérémie, Caumont, Du Tast, Massicotte, La Peltrie, Lanouillier, Gaudet, Fenelon, Subercase and Grasset on NTS map sheets 32L/01 to 04 and 32E/13 to 16.T

The main access to the Fenelon camp (in the eastern part of the Property) is via Highway 109 from Amos, which heads north. From this highway, the drive is 13 km west along the road leading to the former small mining town of Joutel, then 51 km northwest on the Selbaie paved road (N-810). Between the Km 122 and Km 123 markers, a year-round forestry road provides access to the Fenelon camp, 21 km from the junction.

The Property consists of eight (8) claim blocks: Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Casault. The Casault Block corresponds to Midland's Casault Property under option to Wallbridge. Part of the Detour East Block is under a joint venture ("JV") agreement with Kirkland Lake Gold Ltd ("Kirkland Lake"), a wholly owned subsidiary of Agnico Eagle Mines Limited ("Agnico") following business combination transaction in February 2022.

The combined claim blocks, including the JV area, comprise 1,524 claims staked by electronic map designation (map-designated cells or "CDC"), three (3) non-exclusive leases for surface mineral substances, and one (1) mining lease for an aggregate area of 83,082.11 ha.

Wallbridge acquired the Property through several transactions with Balmoral Resources Ltd ("Balmoral") and Midland Exploration Inc. ("Midland").

All claim blocks are subject to royalties payable to various beneficiaries, with the major holder being Franco-Nevada Corporation.

Geology

The Property is located in the northwestern Archean Abitibi Subprovince of the southern Superior Province in the Canadian Shield. The Property overlies a significant portion of the North Volcanic Zone or Harricana-Turgeon ("HT") volcano-sedimentary belt of the Abitibi Subprovince, near the boundary between the Abitibi and Opatica subprovinces.

The HT belt overlaps the Ontario-Quebec boundary. In Ontario, the HT belt is formed by the Deloro, Porcupine and Stoughton-Roquemare assemblages of Thurston et al. (2008). In Quebec, these assemblages are recognized as the Manthet Group, the Rivière Turgeon Formation and the Brouillan-Fenelon Group, each forming a distinct geological domain. The boundaries between the geological domains are delineated by high-strain zones that include the Lower Detour ("LDDZ") and Sunday Lake ("SLDZ") deformation zones. The SLDZ separates the Manthet and Matagami domains, whereas the LDDZ separates the Matagami and Brouillan-Fenelon domains.

The Manthet Group, to the north of the SLDZ, has been interpreted as the equivalent of the 2730-2724 Ma Deloro assemblage. It is characterized by abundant iron-rich tholeitic basalts and coeval gabbroic sills and dykes with minor intercalated graphitic argillites, as well as mafic and felsic volcaniclastic rocks. Ultramafic flows and intrusions at the base of the volcanic sequence are also known near the Detour gold mine and between the Fenelon Block and the Opatica Subprovince. The volcanic sequence is coeval to the volcanic units of the Selbaie and Matagami base metal mining camps. The degree of metamorphism and deformation within the Manthet domain increases gradually northward toward the Opatica gneisses.

The Rivière Turgeon Formation is bound by the SLDZ in the north and the LDDZ in the south, bridging the Manthet and Brouillan-Fenelon groups, respectively. Rock types consist mostly of wackes and argillites, as well as tuffaceous units and iron formations. These sediments are interpreted to be deposited in a successor basin unconformably overlying the volcanic rocks. They are included in the Matagami Group and are considered equivalent to the Porcupine-type sediments of the southern Abitibi. The iron formations show strong lateral continuity along east-west trends. Other rock types include numerous mafic to ultramafic sill-like intrusions and at least one larger composite maficultramafic intrusion. The contact between the Rivière Turgeon Formation and the Manthet Group is delineated by the SLDZ, which dips 70°-80° to the south-southwest.

The volcanic-dominated Brouillan-Fenelon Group lies to the south of the LDDZ and comprises mostly mafic volcanic rocks that are interpreted to be the equivalent of the 2723-2720 Ma Stoughton-Roquemaure Assemblage of Thurston et al. (2008). This geological domain contains a greater volume of felsic volcanic and intrusive rocks than the Manthet Group. It hosts the former-producing Selbaie volcanogenic massive sulphide ("VMS") deposit.

North of the SLDZ, the Fenelon claim block is underlain by NW-SE trending sedimentary rocks and lesser mafic to ultramafic volcanic rocks. These rocks have been intruded by intermediate to mafic/ultramafic sills and dykes. To the northwest, the sequence is intruded by the Jeremie Pluton, an ovoid-shaped, composite felsic to intermediate intrusive body. Diorite intrusions, such as the Jeremie Diorite, extend into the Fenelon deposit area and are interpreted to be earlier phases of the Jeremie Pluton.

Coarse-grained sedimentary rocks (greywacke, siltstone) are most abundant in the southwest, whereas finer-grained sedimentary rocks (argillite, graphitic argillite, and mudstone) dominate in the northeast. The Tabasco and Cayenne zones are hosted in this sedimentary package, mainly constrained to the finer sediments. Similarly, the Contact Zone is also mainly hosted in the sediments but formed along the margin of the Jeremie Diorite. The Area 51 vein network is largely hosted in the Jeremie Diorite.

The Main Gabbro is the largest intrusive body in area of the Fenelon deposit after the Jeremie Diorite. The Main Gabbro is the host of the Gabbro Zones, the only historically known (pre-Wallbridge) gold-bearing zones of the Fenelon deposit

Mineralization

The Property is well endowed with mineral occurrences and includes the Fenelon and Martiniere deposits.

The Fenelon deposit comprises four gold-bearing domains: the Gabbro Zones in the dyke swarm complex, the Tabasco-Cayenne-Contact zones in sedimentary rocks, the Area 51 Zone in the Jérémie Diorite and adjacent sedimentary rocks, and the Ripley-Reaper zones in the southern extension of the Jérémie Diorite along the northern contact of the SLDZ.

The Gabbro Zones (a.k.a. the Main Gabbro Zone or Discovery Gold Zone) were the only known mineralization of significance before the issuer discovered the Tabasco-Cayenne-Contact and Area 51 zones. The Gabbro Zones consist of seven (7) mineralized zones from northeast to southwest: Trinidad Scorpion, Fresno (formerly Zone B), Chipotle (formerly Zone C), Anaheim, Naga Viper (formerly zones D and E), Habanero and

Serrano. The mineralized zones are restricted to a wide corridor of intensely altered gabbro, pyroxenite and leucogabbro, typically focused along internal contacts between different intrusive pulses, between two panels of argillaceous sediments, except for the Habanero zones, which are partially hosted in sediments. The zones are primarily concentrated in a flexure where the gabbro direction changes from WNW-ESE to E-W. The zones are predominantly located at the inflection of shear zones, where the dip changes from 70° to vertical. The general rake of the Gabbro Zones is subparallel to the mineral stretching lineations. The thickness of the mineralized envelopes varies from a few centimetres to 15 m.

The Tabasco-Cayenne system was discovered in 2019. It is bounded by the Main Gabbro to the northeast and the Jérémie Diorite to the southwest (Figure 7.5). The three zones have similar geological characteristics, but the Contact Zone has a slightly different orientation. The Tabasco and Cayenne zones trend N110 and dip steeply between 70° and 90° to the south. The Contact Zone generally trends at N125 but becomes E-W where it coincides with the Jeremie Fault and dips moderately to steeply between 50° and 90° to the north. Together, they form an anastomosing and sheared mineralized system largely controlled by the stratigraphic units and Jérémie Diorite with numerous secondary splays. Along these shear zones, internal variations in dip define dilatational segments that accompany folded and boudinaged gold-bearing shear veins. These features may represent primary ore shoots. In some places, the zones follow dyke contacts.

The mineralization in the Area 51 Zone is dominantly hosted in the Jérémie Diorite but also extends into the sediments to the south and southwest. The zone is bounded by the JD Contact Zone to the north and northeast. The highest concentration of gold occurs where the Jérémie Diorite intrusion forms narrower stocks bounded by sediments or by sediments and a more mafic phase of the Jérémie Diorite. Gold mineralization is mainly associated with isolated or regularly spaced subparallel sheeted translucent grey quartz veins that are generally 1-2 cm thick and rarely up to 5 cm thick.

The Ripley-Reaper zones represent a southern parallel series of mineralized zones akin to the Area 51 system. The zones are located approximately 250 to 500 m south of the Area 51 system and straddle the contact of the SLDZ. The mineralization is preferentially hosted in the more felsic phase of the Jérémie intrusion, which is surrounded (and intercalated with) the more mafic phase; however, mineralization also occurs in the mafic phase and the adjacent sediments. It is associated with a pervasive replacement silicasericite alteration of the Jérémie intrusion that yields a relatively consistent distribution of gold grades. Higher-grade zones are associated with quartz veins containing visible gold and moderate sulphide content and arsenopyrite-pyrite+/-chalcopyrite stockwork veins.

Diamond drilling on the Martiniere Block has defined several mineralized zones or showings along structural trends. Gold mineralization typically shows a close spatial association with greater amounts of: (1) disseminated to (rarely) semi-massive pyrite, (2) carbonate and/or quartz alteration and veining, and (3) brittle to ductile structures. Lithology and alteration are somewhat different on the Bug Lake and Martiniere West trends, resulting in a distinction between "Bug Lake-style" and "Martiniere West-style" mineralization.

At least three pyrite-dominant VMS systems also occur on the Martiniere Block, although generally with negligible base and precious metal contents.

Two other significant gold mineralized occurrences are present in the Detour East (Lynx-Rambo zones) and Casault (Vortex) claim blocks of the Property. In both cases, gold mineralization is reportedly structurally controlled and associated with major deformation zones or splays.

Data Verification

Data verification and the site visit demonstrated that the databases for the Fenelon and Martiniere deposits are considered valid and of sufficient quality to be used for the mineral resource estimates.

Mineral Resource Estimates

The 2023 MRE comprises updated estimates for the Fenelon and Martiniere deposits.

The updated mineral resource estimates for the Fenelon and Martiniere deposits (combined, the "Detour-Fenelon Gold Trend 2023 MRE" or "2023 MRE") were prepared by QPs Carl Pelletier (P.Geo.), Vincent Nadeau-Benoit (P.Geo.), Simon Boudreau (P.Eng.) and Marc R. Beauvais (P. Eng.) all of InnovExplo, using all available information.

The effective date of the 2023 MRE is January 13, 2021.

The Fenelon area, which includes the mineral resource area of the Fenelon deposit, has a NW strike length of 3,000 m, a width of 2,000 m, and a vertical extent of 1,000 m below the surface. Located 30 km west of the Fenelon deposit, the mineral resource area of the Martiniere deposit has a NE strike length of 1,000 m, a width of 350 m and a vertical extent of 300 m (Martiniere West and Central Trend), and a NW strike length of 1,500 m, a width of 600 m and a vertical extent of 400 m (Bug Lake Trend).

The Fenelon model consists of 112 high-grade zones and 7 low-grade envelopes (Figure 14.3). The Martiniere model consists of 75 high-grade zones and 9 low-grade envelopes. For Fenelon, the high-grade zones were designed to the true thickness of the mineralization (on average down to a minimum thickness of 0.5 m but locally down to 0.2 m, depending on the assay length) and based on a cut-off grade of 1.0 g/t Au. For Martiniere, the high-grade zones were designed to the true thickness of the mineralization (on average down to a minimum thickness of 0.5 m but locally down to 0.2 m, depending on the assay length) and based on a cut-off grade of 1.0 g/t Au.

The resource database of the Fenelon deposit contains 1,350 drill holes (536,621.71m). This selection contains 312,123 sampled intervals taken from 377,729.50 m of drilled core. The resource database of the Martiniere deposit contains 596 drill holes (169,266.07m). This selection contains 122,312 sampled intervals taken from 126,791.00m of drilled core.

The 2023 MRE can be classified as Indicated and Inferred mineral resources based on geology, grade continuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The requirement of reasonable prospects for eventual economic extraction has been met by having a minimum width for the modelling of the mineralization zones and a cut-off grade, using reasonable inputs, both for potential open pit and underground extraction scenarios, and constraints consisting of a surface shape for the open-pit scenario and mineable shapes for the underground scenario.

The QPs consider the 2023 MRE reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards and CIM MRMR Best Practice Guidelines.

The following table displays the results of the 2023 MRE at the official cut-off grades.

Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate (Table 14.11)

Deposit	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)
	Indicated	In Pit > 0.45	727,400	4.46	104,400	2,369,600
Fenelon	mulcaleu	UG > 1.50	20,931,700	3.37	2,265,200	
reneion	Inferred	In Pit > 0.45	303,900	4.08	39,800	1,718,400
		UG > 1.50	18,181,400	2.87	1,678,500	
	Indicated	In Pit > 0.55	7,757,700	2.14	534,100	684,300
		UG (C&F) > 2.60	31,600	2.84	2,900	
Martiniere		UG (LH) > 2.40	1,253,500	3.66	147,400	
Martiniere	Inferred	In Pit > 0.55	2,652,400	1.83	156,400	
		UG (C&F) > 2.60	215,200	2.96	20,500	632,300
		UG (LH) > 2.40	3,327,300	4.26	455,400	
Total Indicated			30,701,900	3.09		3,054,000
Total Inferred			24,680,200	2.96		2,350,700

Notes to the Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate:

- The independent and qualified persons ("QPs") for the 2023 MRE are Carl Pelletier (P.Geo.), Vincent Nadeau-Benoit (P.Geo.), Simon Boudreau (P.Eng.) and Marc R. Beauvais (P.Eng.), all of InnovExplo Inc. The 2023 RE follows CIM Definition Standards (2014) and CIM MRMR Guidelines (2019). The effective date of the Detour-Fenelon Gold Trend 2023 MRE is January 13, 2023.
- 2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.
- The QPs are not aware of any known environmental, permitting, legal, title-related, taxation, sociopolitical
 or marketing issues, or any other relevant issue, that could materially affect the potential development of
 mineral resources other than those discussed in the 2023 MRE.
- 4. For Fenelon, 112 high-grade zones and seven (7) low-grade envelopes were modelled in 3D to the true thickness of the mineralization. Supported by measurements, a density value of 2.80 g/cm³ was applied to the blocks inside the high-grade zones, and 2.81 g/cm³ was applied to the blocks inside the low-grade envelopes. High-grade capping was done on raw assay data and established on a per-zone basis, ranging between 25 g/t and 100 g/t Au for the high-grade zones, except for Chipotle and Cayenne 3 for which capping was set at 330 g/t Au, and between 4 g/t and 10 g/t Au for the low-grade envelopes. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed. A minimum mining width of 2 m was used for underground stope optimization.
- 5. For Martiniere, 75 high-grade zones and nine (9) low-grade envelopes were modelled in 3D to the true thickness of the mineralization. Supported by measurements, a density value of 2.83 g/cm³ was applied to the blocks inside the high-grade zones, except for the high-grade zones associated with massive sulphide intersections where a value of 3.00 g/cm³ was applied, and 2.81 g/cm³ was applied to the blocks inside the low-grade envelopes. High-grade capping was done on raw assay data and established on a per-zone basis, ranging between 25 g/t and 100 g/t Au for the high-grade zones and between 1 g/t and 6 g/t Au for the low-grade envelopes. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed. A minimum mining width of 2 m was used for underground stope optimization.

- 6. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to blocks (potential surface and underground extraction scenario) using Whittle and DSO and by the application of cut-off grades. The cut-off grade for the Fenelon deposit was calculated using a gold price of US\$1,600 per ounce; a CAD:USD exchange rate of 1.30; a refining cost of \$5.00/t; a processing cost of \$18.15/t; a mining cost of \$5.50/t (bedrock) or \$2.15/t (overburden) for the surface portion, a mining cost of \$65.00/t for the underground portion and a G&A cost of \$9.20/t. Values of metallurgical recovery of 95.0% and royalty of 4.0% were applied during the cut-off grade calculation. The cut-off grade for the Martiniere deposit was calculated using a gold price of US\$1,600 per ounce; a CAD:USD exchange rate of 1.30; a refining cost of \$5.00/t; a processing cost of \$18.15/t; a mining cost of \$4.55/t (bedrock) or \$2.15/t (overburden) for the surface portion, a mining cost of \$118.80/t for the underground portion using the longhole mining method (LH), a mining cost of \$130.70/t for the underground portion using the cut and fill mining method (C&F), a G&A cost of \$9.20/t and a transport-to-process cost of \$6.50/t. Values of metallurgical recovery of 96.0% and royalty of 2.0% were applied during the cut-off grade calculation. The cut-off grades should be re-evaluated in light of future prevailing market conditions (metal prices, exchange rate, mining cost, etc.).
- 7. Results are presented in situ. Ounce (troy) = metric tons x grade/31.10348. The number of tonnes and ounces was rounded to the nearest thousand. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations as per NI 43-101.

Interpretation and Conclusions

The following conclusions were reached after conducting a detailed review of all pertinent information and completing the Detour-Fenelon Gold Trend 2023 MRE:

- The results demonstrate the geological and grade continuities for both gold deposits, Fenelon and Martiniere.
- The drill holes provide sufficient information for the mineral resource estimates of the 2 (two) deposits.
- In a combined scenario, the Fenelon deposit contains:
 - at a cut-off grade of 0.45 g/t Au for open-pit mining, an estimated Indicated mineral resource of 727,400 t grading 4.46 g/t Au for 104,400 oz Au and an estimated Inferred mineral resource of 303,900 t grading 4.08 g/t Au for 39,800 oz Au,
 - at, a cut-off grade of 1.50 g/t Au for underground, using long-hole stoping, an estimated Indicated mineral resource of 20,931,700 t grading 3.37 g/t Au for 2,265,200 oz Au and an estimated Inferred mineral resource of 18,181,400 t grading 2.87 g/t Au for 1,678,500 oz Au,
- In a combined scenario, the Martiniere deposit contains:
 - at a cut-off grade of 0.55 g/t Au for open-pit mining, an estimated Indicated mineral resource of 7,757,700 t grading 2.14 g/t Au for 534,100 oz Au and an estimated Inferred mineral resource of 2,652,400 t grading 1.83 g/t Au for 156,400 oz Au.
 - at, a cut-off grade of 2.40 g/t Au for underground, using long-hole stoping, an estimated Indicated mineral resource of 1,253,500 t grading 3.66 g/t Au for 147,400 oz Au and an estimated Inferred mineral resource of 3,327,300 t grading 4.26 g/t Au for 455,400 oz Au,
 - at, a cut-off grade of 2.60 g/t Au for underground, using the cut and fill mining method, an estimated Indicated mineral resource of 31,600 t grading 2.84 g/t Au for 2,900 oz Au and an estimated Inferred mineral resource of 215,200 t grading 2.96 g/t Au for 20,500 oz Au,
- Additional diamond drilling could upgrade some of the Inferred mineral resource to the Indicated category and could identify additional mineral resources down-plunge and in the vicinity of the current identified mineralization.

Recommendations

Based on the results of the 2023 MRE, the QPs recommend advancing the Fenelon and Martiniere deposits to an advanced phase of exploration. The QPs also recommend continuing the property-scale exploration program, including compilation studies, drill target generation, and drilling brownfield targets on other claim blocks.

The recommended two-phase work program is detailed below:

Phase 1:

- Engineering studies:
 - Continue advancing the engineering studies to gather geotechnical, metallurgical, environmental, and hydrogeological information (Fenelon and Martiniere).
- Complete a preliminary economic assessment ("PEA") using the 2023 MRE with (supported by) a NI 43-101 Technical Report. The purpose of the PEA will be to confirm, as a first step, the potential economic viability of the Fenelon Gold project, and it will also help prepare and prioritize the next steps (Phase 2) of the project.
- Exploration drilling Fenelon:
 - Further drilling should focus on testing the extensions of known gold zones, main host rocks (Jeremie Diorite and Main Gabbro) and structures recognized in controlling gold mineralization (Sunday Lake Deformation Zone, Jeremie Fault, and other secondary fault zones) with large-spaced step-outs or grassroots drill targets (geophysical and geochemical anomalies or geological and structural trends).
- Exploration work Martiniere:
 - Complete geophysical programs, field work, and technical studies to generate grassroots drill targets
- Exploration drilling Martiniere:
 - Further drilling should focus on testing the known gold trends and orehosting environments with large-spaced step-outs, as well as testing some property-wide grassroots drill targets.
- Exploration work and drilling Regional (other claim blocks of the Detour-Fenelon Gold Trend):
 - Further drilling should focus on testing some property-wide grassroots drill targets (geophysical and geochemical anomalies or geological and structural trends)

Phase 2 (contingent on the success of Phase 1):

- Infill and exploration drilling Fenelon (provision for follow-up on Phase 1).
- Infill and exploration drilling Martiniere (provision for follow-up on Phase 1).
- Complete an update of the MREs for the Fenelon and Martiniere deposits that will include the results of the recommended drilling programs from Phase 2.
- Complete a pre-feasibility study ("PFS") based on the updated mineral resource estimates, The purpose of the PFS will be to confirm the economic viability of the Fenelon Gold and Martiniere Gold projects (as a synergy) and summarized in an updated NI 43-101 Technical Report.

1.1 Costs Estimate for Recommended Work

The QPs have prepared a cost estimate (in Canadian dollars) for the recommended twophase work program to serve as a guideline. The budget for the proposed program is presented in Table 26.1. Expenditures for Phase 1 are estimated at \$35.4 million (incl. 15% for contingencies). Expenditures for Phase 2 are estimated at \$39.3 million (incl. 15% for contingencies). The grand total is \$74.7 million (incl. 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

Estimated Costs for the Recommended Work Program

Phase 1	Work Program	Description	Budget Cost
	Engineering studies		\$3.0M
	PEA on the Detour-Fenelon Gold Trend		\$1.0M
	Exploration drilling – Fenelon	15,000 m	\$6.0M
	Exploration work – Martiniere		\$1.0M
	Exploration drilling – Martiniere	23,500 m	\$9.4M
	Exploration work – Regional		\$2.0M
	Exploration drilling – Regional	11,000 m	\$4.4M
	Contingencies (15%)		\$4.6M
	Phase 1 subtotal		\$35.4M
Phase 2	Work Program	Description	Budget Cost
	Infill and exploration drilling – Fenelon (provision for follow-up on Phase 1).	40,000 m	\$16.0M
	Infill and exploration drilling – Martiniere (provision for follow-up on Phase 1).	40,000 m	\$16.0M
	Update of the Detour-Fenelon Gold Trend MRE		\$0.2M
	PFS on the Detour-Fenelon Gold Trend		\$2.0M
	Contingencies (15%)		\$5.1M
	Phase 2 subtotal		\$39.3M
	TOTAL (Phase 1 and Phase 2)		\$74.7M

2. INTRODUCTION

Wallbridge Mining Company Limited ("Wallbridge" or the "issuer") retained InnovExplo Inc. ("InnovExplo") to prepare a technical report (the "Technical Report") to support the results of the updated mineral resource estimates for the Fenelon and Martiniere deposits (combined, the "Detour-Fenelon Gold Trend 2023 MRE" or "2023 MRE") on the issuer's Detour-Fenelon Gold Trend land package (the "Property"). The Technical Report was prepared in accordance with Canadian Securities Administrators' *National Instrument 43-101 Standards of Disclosure for Mineral Projects* ("NI 43-101") and Form 43-101F1. Attila Péntek, VP Exploration of Wallbridge, assigned the mandate.

InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Quebec.

Wallbridge is a Canadian mining company trading publicly on the Toronto Stock Exchange ("TSX") under the symbol WM and on the United States OTCQX Best Market ("OTCQX") under the symbol WLBMF..

2.1 Terms of Reference

Wallbridge was incorporated in the Province of Ontario under the Business Corporations Act (Ontario) by filing articles of incorporation effective June 3, 1996.

The head office, registered office and principal place of business are in the city of Greater Sudbury at 129 Fielding Road, Lively, Ontario, P3Y 1L7. The issuer also maintains an office at 80 Richmond Street West, 18th Floor, Toronto, Ontario, M5H 2A4.

The issuer acquired the Property through several transactions with Balmoral Resources Ltd ("Balmoral") and Midland Exploration Inc. ("Midland").

The Property consists of eight (8) claim blocks covering 83,082.11 ha: Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Casault. The Casault Block corresponds to Midland's Casault Property under option to Wallbridge. Part of the Detour East Block is under a joint venture ("JV") agreement with Kirkland Lake Gold Ltd ("Kirkland Lake"), now Agnico Eagle Mines Limited ("Agnico") following the merger of equals transaction in February 2022. In this Technical Report, all eight (8) claim blocks are collectively referred to as the Detour-Fenelon Gold Trend land package (the "Property").

In October 2016, the issuer purchased Balmoral's Discovery Zone Property, host to the Discovery Zone deposit (a.k.a. the "Discovery Gold Zone") and a 10.5-km² subdivision of Balmoral's larger Fenelon Property (Wallbridge press releases of May 25, 2016, and October 19, 2016). The Fenelon Property has also been called the "Fenelon A Property" or the "Fenelon Project" by past operators. Wallbridge renamed the property and deposit the Fenelon Gold Property and the Fenelon Deposit (a.k.a. the "Fenelon Gold System").

Wallbridge acquired Balmoral on May 22, 2020, by way of a plan of arrangement, thereby adding the remainder of Balmoral's Fenelon Property and six (6) other of the company's properties to its portfolio (Wallbridge press release of May 22, 2020).

On June 18, 2020, Wallbridge announced it had entered into an option agreement with Midland to acquire an interest of up to 65% in the Casault Property.

Finally, on September 14, 2020, Wallbridge announced it had entered into a non-binding term sheet with respect to a JV on its Detour East Block with Kirkland Lake. Under the

terms of this JV, Kirkland Lake (now Agnico) can earn a 75% interest in Detour East by incurring \$35 million in expenditures on the claim block.

On November 18, 2022, the issuer announced that it had completed the sale of all of the property, assets, rights, and obligations related to Wallbridge's portfolio of nickel assets to Archer Exploration Corp ("Archer"). The nickel assets included a 100% interest in the Grasset nickel sulphide project located in Quebec.

The Property provides Wallbridge with a district-scale (roughly 830 km²) land position along the Detour-Fenelon Gold Trend, a major mineralized corridor in the Sunday Lake Deformation Zone ("SLDZ"). The trend extends westward to include the open-pit Detour Lake gold mine (Agnico) in Ontario, 15 km from the issuer's property limit.

The Property hosts the Fenelon Deposit (the Gabbro, Tabasco-Cayenne, Area 51 and Ripley-Reaper zones) and the Martiniere Deposit (Bug Lake, Martiniere West and other zones).

The Property is an advanced-stage project with near-term production potential. Drill intersections suggest an exploration potential for mineral resource expansion.

2.2 Report Responsibility and Qualified Persons

This Technical Report was prepared by InnovExplo employees Carl Pelletier, (P.Geo.), Co-President Founder of InnovExplo, Vincent Nadeau-Benoit (P.Geo.), Senior Geologist in Mineral Resources Estimation, Simon Boudreau (P.Eng.), Senior Mining Engineer, Marc R. Beauvais (P. Eng.), Senior Mining Engineer. All are independent and qualified persons ("QPs") as defined by NI 43 101.

Mr. Pelletier is a professional geologist in good standing with the OGQ (No. 384), PGO (No. 1713), EGBC (No. 43167) and NAPEG (No. L4160). He is co-author of the Technical Report and share responsibility for all items.

Mr. Nadeau-Benoit is a professional geologist in good standing with the OGQ (No. 1535), EGBC (No. 54427) and NAPEG (No. L4154). He is co-author of the Technical Report and share responsibility for all items.

Mr. Boudreau is a professional engineer in good standing with the OIQ (licence No. 132 388). He is responsible for the preparation of section 14.12. He is also co-author of and share responsibility for sections 1, 2, 3, 14, 25, 26 and 27.

Mr. Beauvais is a professional engineer in good standing with the OIQ (licence No. 108195) and the PEO (licence No. 100061114). He is responsible for the preparation of section 14.12. He is also co-author of and share responsibility for sections 1, 2, 3, 14, 25, 26 and 27.

2.3 Site Visit

Mr. Nadeau-Benoit visited the Property on November 3, 2022, for the purpose of this Technical Report. The site visit included a review of the access to the Property, visual checks of the Fenelon camp, the core facilities (including core storage and sawing and sampling rooms) and a general assessment of the site's overall condition, an examination of mineralized intervals from recent holes drilled on the Fenelon Block and the Martiniere Block, a review of the core logging and sampling procedures with the Issuer's employees, onsite data verification, and personal inspection of the application of the core logging,

sawing and sampling procedures. He has also visited the property in the past for the previous Technical Report.

Mr. Pelletier and Mr. Beauvais have visited the Property for the purpose of this Technical Report on July 5, 2022. The visit included an underground tour of the ramp access and drift developed in Area 51, a review of the access to the Property, visual checks of the Fenelon camp, the core facilities (including core storage and sawing and sampling rooms) and a general assessment of the site's overall condition. Mr. Pelletier has also visited the property in the past for the previous Technical Report.

2.4 Effective Date

The effective date of this report is March 3, 2023.

2.5 Sources of Information

This Technical Report is supported by the information described in Item 3 and the documents listed in Item 27. Excerpts or summaries from documents authored by other consultants are indicated in the text.

The authors' assessment of the Project was based on published material in addition to the data, professional opinions and unpublished material submitted by the issuer. The authors reviewed all the relevant data provided by the issuer and/or by its agents.

The author also consulted other sources of information, mainly the Government of Quebec's online claim management and assessment work databases (GESTIM and SIGEOM, respectively), as well as documents published on SEDAR (www.sedar.com) under the issuer's profile, including technical reports, annual information forms, MD&A reports and press releases.

The authors reviewed and appraised the information used to prepare this Technical Report and believe that such information is valid and appropriate considering the status of the project and the purpose for which this Technical Report is prepared. The authors have fully researched and documented the conclusions and recommendations made in this Technical Report.

2.6 Currency, Units of Measure, and Acronyms

The abbreviations, acronyms and units used in this report are provided in Table 2.1 and Table 2.2. All currency amounts are stated in Canadian Dollars (\$, C\$, CAD) or US dollars (US\$, USD). Quantities are stated in metric units, as per standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for weight, kilometres (km) or metres (m) for distance, hectares (ha) for area, percentage (%) for copper and nickel grades, and gram per metric ton (g/t) for precious metal grades. Wherever applicable, imperial units have been converted to the International System of Units (SI units) for consistency (Table 2.3).

Table 2.1 - List of Acronyms

Acronyms	Term	
43-101	National Instrument 43-101 (Regulation 43-101 in Quebec)	
5DL	Five times the Detection Limit	
AA or AAS	Atomic absorption spectroscopy	
Ag	Silver	
Ai	Abrasion index	
Au	Gold	
BLFZ	Bug Lake Fault Zone	
BLN	Bug Lake North	
BLS	Bug Lake South	
CA	Certificate of authorization	
CAD:USD	Canadian-American exchange rate	
CIM	Canadian Institute of Mining, Metallurgy and Petroleum	
CIM Definition Standards	CIM Definition Standards for Mineral Resources and Mineral Reserves (2014)	
CIM MRMR Guidelines	CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (2019)	
CL	Core length	
Co	Cobalt	
COG	Cut-off grade	
COV	Coefficient of variation	
COVAVG	Average coefficient of variation	
CRM	Certified reference material	
CSA	Canadian Securities Administrators	
CSS	Contact support services	
Cu	Copper	
CV	Coefficient of variation	
DDH	Diamond drill hole	
DDZ	Lac du Doigt Deformation Zone	
DL	Detection Limit	
DSM	Digital Surface Model	
DSO	Deswik stope optimizer	
EA	Environmental assessment	
EGBC	Engineers and Geoscientists of British Columbia	
EM	Electromagnetic	
ESIA	Environmental and social impact assessment	
F ₁₀₀	100% passing - Feed	
FA	Fire assay	

Acronyms	Term	
FS	Feasibility study	
G&A	General and administration	
GESTIM	Gestion des titres miniers (the MERN's online claim management system)	
GM	Assessment report in the SIGEOM database	
GPR	Ground penetrating radar	
GRAV	Gravimetric analysis	
HT	Harricana-Turgeon	
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectroscopy	
ICP-ES	Inductively Coupled Plasma Emission Spectroscopy	
ICP-MS	Inductively Coupled Plasma Mass Spectroscopy	
ID2	Inverse distance squared	
IP	Induced Polarization	
ISO	International Organization for Standardization	
JV	Joint venture	
JVA	Joint venture agreement	
LDDZ	Lower Detour Deformation Zone	
LGDZ	Lac Gignac Deformation Zone	
LOI	Letter of intent	
Mag	Magnetics (or magnetometer)	
MERN	Ministère de l'Énergie et des Ressources Naturelles du Québec (Quebec's Ministry of Energy and Natural Resources)	
mesh	US mesh	
MFFP	Ministère des Forêts, de la Faune et des Parcs (Quebec's Ministry of Forests, Wildlife and Parks)	
MMI	Mobile metal ion	
MRE	Mineral resource estimate	
MRN	Former name of MERN	
NAD 83	North American Datum of 1983	
NAPEG	Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists	
nd	Not determined	
Ni	Nickel	
NI 43-101	National Instrument 43-101 (Regulation 43-101 in Quebec)	
NN	Nearest neighbour	
NSR	Net smelter return	
NTS	National Topographic System	
OGQ	Ordre des Géologues du Québec	
OIQ	Ordre des Ingénieurs du Québec	

Acronyms	Term	
OK	Ordinary kriging	
P80	80% passing – Product	
PA	Preliminary Assessment Study	
PAG	Potentially acid generating	
Pb	Lead	
Pd	Palladium	
PEA	Preliminary Economic Assessment	
PEO	Professional Engineers of Ontario	
PFS	Prefeasibility study	
PGE	Platinum group elements	
PGM	Platinum group metals	
PGO	Professional Geoscientists Ontario	
Pt	Platinum	
QA	Quality assurance	
QA/QC	Quality assurance/quality control	
QC	Quality control	
QDL	Quartz-Dolomite±Sulphide Veins	
QP	Qualified person (as defined in National Instrument 43-101)	
RC	Reverse circulation (drilling)	
Regulation 43-101	National Instrument 43-101 (name in Quebec)	
RQD	Rock quality designation	
RQI	Rock quality index	
RWi	Rod work index	
SCC	Standards Council of Canada	
SD	Standard deviation	
SG	Specific gravity	
SIGÉOM	Système d'information géominière (the MERN's online spatial reference geomining information system)	
SLDZ	Sunday Lake Deformation Zone	
SMU	Selective mining unit	
SPLP	Synthetic Precipitation Leaching Procedure	
SSZ	Silicified Shear Zones	
TDS	Total dissolved solids	
TSX	Toronto Stock Exchange	
UAV	Unmanned aerial vehicle	
UG	Underground	
UTM	Universal Transverse Mercator coordinate system	

Acronyms	Term	
VMS	Volcanogenic Massive Sulphide	
VTEM	Versatile time domain electromagnetic	
Zn	Zinc	

Table 2.2 – List of units

Symbol	Unit		
%	Percent		
% solids	Percent solids by weight		
\$, C\$	Canadian dollar		
\$/t	Dollars per metric ton		
o	Angular degree		
°C	Degree Celsius		
μm	Micron (micrometre)		
μS/cm	Micro-siemens per centimetre		
Α	Ampere		
avdp	Avoirdupois		
cfm	Cubic feet per minute		
cfs	Cubic feet per second		
cm	Centimetre		
cm ²	Square centimetre		
cm ² /d	Square centimetre per day		
cm ³	Cubic centimetre		
сР	Centipoise (viscosity)		
d	Day (24 hours)		
dm	Decametre		
ft	Foot (12 inches)		
g	Gram		
G	Billion		
Ga	Billion years		
gal/min	Gallon per minut		
g-Cal	Gram-calories		
g/cm ³	Gram per cubic centimetre		
g/L	Gram per litre		
g/t	Gram per metric ton (tonne)		
GW	Gigawatt		
h	Hour (60 minutes)		

Symbol	Unit	
ha	Hectare	
hp	Horsepower	
Hz	Hertz	
in	Inch	
k	Thousand (000)	
ka	Thousand years	
kbar	Kilobar	
kg	Kilogram	
kg/h	Kilogram per hour	
kg/t	Kilogram per metric ton	
kj	Kilojoule	
km	Kilometre	
km ²	Square kilometre	
km/h	Kilometres per hour	
koz	Thousand ounces	
kPa	Kilopascal	
kW	Kilowatt	
kWh	Kilowatt-hour	
kWh/t	Kilowatt-hour per metric ton	
kVA	Kilo-volt-ampere	
L	Litre	
lb	Pound	
lb/gal	Pounds per gallon	
lb/st	Pounds per short ton	
L/h	Litre per hour	
L/min	Litre per minute	
lbs NiEq	Nickel equivalent pounds	
М	Million	
m	Metre	
m ²	Square metre	
m ³	Cubic metre	
m/d	Metre per day	
m³/h	Cubic metres per hour	
m³/min	Cubic metres per minute	
m/s	Metre per second	
m³/s	Cubic metres per second	
Ма	Million years (annum)	

Symbol	Unit	
masl	Metres above mean sea level	
Mbgs	Metres below ground surface	
Mbps	Megabits per second	
MBtu	Million British thermal units	
mi	Mile	
min	Minute (60 seconds)	
Mlbs	Million pounds	
ML/d	Million litres per day	
mm	Millimetre	
mm²	Square millimetres	
mm Hg	Millimetres of mercury	
mm WC	Millimetres water column	
Moz	Million (troy) ounces	
mph	Mile per hour	
Mt	Million metric tons	
MW	Megawatt	
ng	Nanogram	
NiEq	Nickel equivalent	
OZ	Troy ounce	
oz/t	Ounce (troy) per short ton (2,000 lbs)	
ppb	Parts per billion	
ppm	Parts per million	
psf	Pounds per square foot	
psi	Pounds per square inch	
rpm	Revolutions per minute	
S	Second	
s ²	Second squared	
scfm	Standard cubic feet per minute	
st/d	Short tons per day	
st/h	Short tons per hour	
t	Metric tonne (1,000 kg)	
ton	Short ton (2,000 lbs)	
tpy	Metric tonnes per year	
tpd	Metric tonnes per day	
tph	Metric tonnes per hour	
US\$	American dollar	
usgpm	US gallons per minute	

Symbol	Unit	
V	Volt	
vol%	Percent by volume	
wt%	Weight percent	
у	Year (365 days)	
yd^3	Cubic yard	

Table 2.3 – Conversion Factors for Measurements

Imperial Unit	Multiplied by	Metric Unit
1 inch	25.4	mm
1 foot	0.3048	m
1 acre	0.405	ha
1 ounce (troy)	31.1035	g
1 pound (avdp)	0.4535	kg
1 ton (short)	0.9072	t
1 ounce (troy) / ton (short)	34.2857	g/t

3. RELIANCE ON OTHER EXPERTS

The authors did not rely on other experts to prepare this Technical Report.

The QPs relied on the issuer's information regarding mining titles, option agreements, royalty agreements, environmental liabilities and permits. Neither the QPs nor InnovExplo are qualified to express any legal opinion with respect to property titles, current ownership or possible litigation.

4. PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Property is located in the Nord-du-Québec administrative region of the Province of Quebec, Canada, approximately 75 km west-northwest of the town of Matagami (Figure 4.1).

The Property covers 830.82 km², extending 97 km east-west and 20 km north-south. The coordinates of the approximate centroid are 78°53'33"W and 49°59'49"N (UTM: 651048E and 5540489N, NAD 83, Zone 17). The Property overlies the townships of Manthet, Martigny, La Martinière, Jérémie, Caumont, Du Tast, Massicotte, La Peltrie, Lanouillier, Gaudet, Fenelon, Subercase and Grasset on NTS map sheets 32L/01 to 04 and 32E/13 to 16.

4.2 Mining Title Status

The issuer supplied mineral title status. The QPs verified the status of all mining titles using GESTIM, the Government of Quebec's online claim management system (gestim.mines.gouv.qc.ca).

The Property consists of eight (8) claim blocks: Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Casault. The Casault Block corresponds to Midland's Casault Property under option to Wallbridge. Part of the Detour East Block is under a joint venture ("JV") agreement with Kirkland Lake Gold Ltd ("Kirkland Lake"), now Agnico Eagle Mines Limited ("Agnico") following a merger of equals transaction in February 2022.

The combined claim blocks, including the JV area, comprise 1,524 claims staked by electronic map designation (map-designated cells or "CDC"), three (3) non-exclusive leases for surface mineral substances, and one (1) mining lease for an aggregate area of 83,082.11 ha (Figure 4.2).

The issuer holds all mineral titles for the Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere and Harri blocks. Midland owns the Casault Block, for which the issuer has an option agreement to acquire an interest of up to 65%. All claims are in good standing as of January 6, 2023. Four (4) claims have an expiration date before November 22, 2022, work report was filed and the MERN is currently processing their renewal.

Appendix I presents a list of mineral titles with ownership details, royalties and expiration dates.

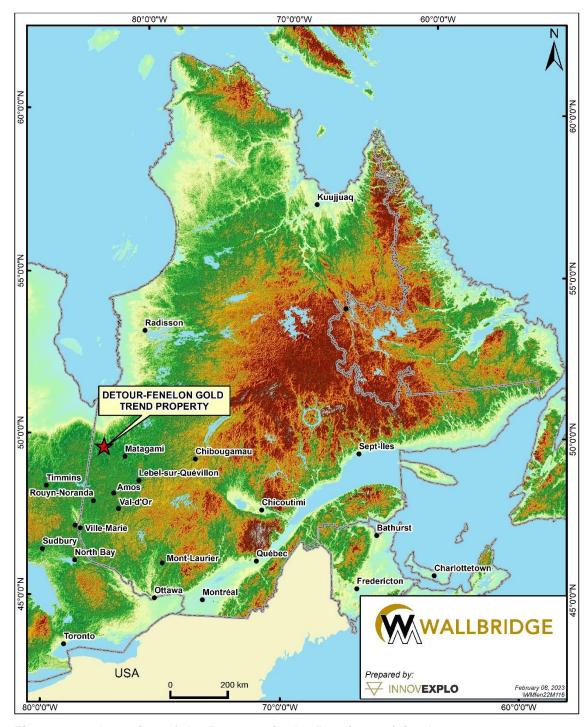


Figure 4.1 – Location of the Property in the Province of Quebec

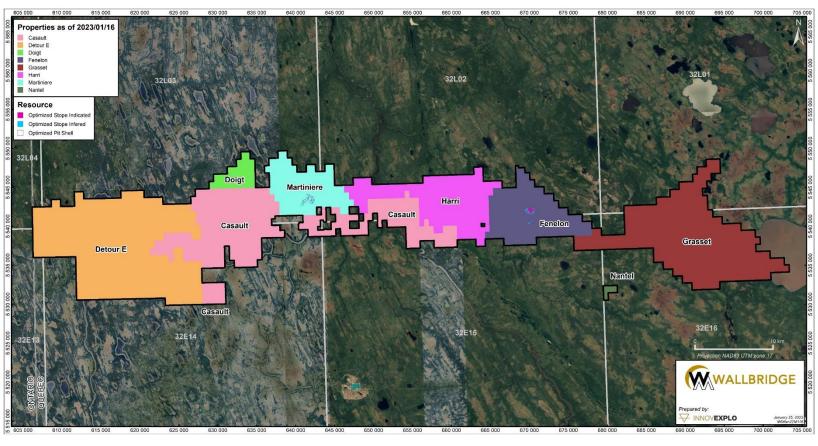


Figure 4.2 – Map of claim blocks comprising the Property

4.3 Acquisition of the Detour-Fenelon Gold Trend land package

Wallbridge acquired the Property through several transactions with Balmoral and Midland.

On May 25, 2016, Wallbridge announced it had entered into a binding agreement through a letter of intent ("LOI") dated May 24, 2016, to acquire the former Discovery Zone Property from Balmoral for a purchase price of \$3.6 million. The property represented a 10.5-km² subdivision of Balmoral's larger Fenelon Property. Wallbridge now refers to the mineralization on the former Discovery Zone Property as the "Fenelon Gold System" or the "Fenelon Deposit".

On October 19, 2016, Wallbridge announced it had completed the purchase by making the final payment. It renamed the acquired property the Fenelon Gold Property.

On March 2, 2020, Wallbridge and Balmoral announced they had entered into a definitive agreement following the signing of an LOI on February 14, 2020, whereby Wallbridge would acquire all the issued and outstanding shares of Balmoral in an all-stock transaction. On May 22, 2020, Wallbridge and Balmoral announced the completion of the agreement, with which Wallbridge had acquired 100% of the issued and outstanding common shares of Balmoral in exchange for consideration of 0.71 of a common share of Wallbridge for each Balmoral share. As a result of the transaction, Balmoral became a wholly owned subsidiary of Wallbridge.

On June 18, 2020, Wallbridge announced that it had increased its holdings in the Detour-Fenelon Gold Trend by entering into an option agreement to acquire an interest of up to 65% in the Casault Property from Midland. For the first option of the two-stage agreement, Wallbridge can acquire an undivided 50% interest in the Casault Property by making an initial expenditure before the end of June 2021 and subsequently incurring aggregate expenditures by the end of June 2024. Upon exercising the first option, Wallbridge may increase its undivided interest in the Casault Property to 65% (the second option) by incurring additional expenditures and/or cash payments within two years from the date of exercise of the first option.

On September 14, 2020, the issuer announced it had entered into a non-binding term sheet with respect to a JV of its Detour East Block with Kirkland Lake Gold now Agnico Eagle Mines Limited ("Agnico"). Under the terms of this JV, Kirkland Lake Gold (now Agnico) can acquire, during Phase 1 (the option), an undivided 50% interest with a minimum expenditure of \$2 million within the first two years. Upon exercising the first option, a JV will be formed, and Kirkland Lake Gold (now Agnico) will hold an additional 25% interest in the claim block by incurring additional expenditures within five (5) years of the formation of the JV. Under the terms of this JV, Kirkland Lake Gold (now Agnico) can earn a 75% interest in the Detour East Block by making expenditures totalling \$35 million on the claim block.

4.4 Sale of Nickel Assets to Archer Exploration Corp.

On November 18, 2022, Wallbridge announced that it had completed the sale of all of the property, assets, rights, and obligations related to its portfolio of nickel assets to Archer Exploration Corp ("Archer"). The nickel assets included a 100% interest in the Grasset nickel sulphide project located in Quebec. According to Wallbridge's press release dated November 18, 2022, under the terms of the transaction, it has received 66,211,929

common shares of Archer. Additional consideration included retaining a 2% NSR royalty on production from the Grasset nickel sulphide project. As part of this agreement, Wallbridge retained the rights to explore for gold on the divested claim blocks, which are governed by an Exploration Agreement.

4.5 Previous Agreements and Encumbrances – Mineral Royalties

All eight (8) claim blocks are subject to royalties payable to various beneficiaries, with the major holder being Franco-Nevada Corporation. Details of the NSR royalties applicable to the Property are presented in Appendix I.

4.6 Permits

In addition to the mandatory exploration permits for tree cutting to provide road access for the drill rig or to conduct drilling and stripping work, the issuer acquired, in early 2018, a permit for dewatering the open pit and old underground workings of the Fenelon deposit (including water treatment and discharge), as well as for commencing underground exploration activities.

In 2019, the issuer submitted a project description for mining the Gabbro Zone. As the Property is located on territory regulated by the James Bay and Northern Quebec Agreement, the project description was provided to an evaluation committee composed of representatives from the Cree First Nations and the provincial and federal authorities. The evaluation committee determined that the project must complete an environmental and social impact assessment ("ESIA"). The MELCC sent the ESIA guidelines in October 2019, and Wallbridge submitted the ESIA in Q3 2020.

After the 2020 drilling program, Wallbridge opted to pause the MELCC's evaluation of the ESIA in order to provide an updated project description and ESIA that would include the Area 51 and Tabasco shear zones. As such, the issuer is focusing on exploration work until sufficient detail has been acquired for an updated project description to be submitted.

The issuer has all the necessary permits and amendments to the existing certificate of authorization ("CA") to support exploration programs and underground development in the Area 51 and Tabasco shear zones. On April 8, 2021, the MELCC approved an amendment to the CA to add Area 51 bulk sample material, increase the in-pit waste by an additional 180,600 t and add a temporary in-pit ore pad of 25,000 t. The request for the proposed 25,000 t bulk sample in the Area 51 sector was submitted to the MERN on July 12, 2021 and approval for a 5,000 t bulk sample was received on December 22, 2021. The issuer also received an exemption from the ESIA process on March 31, 2021, for the development work in Area 51 and the proposed bulk sample.

In 2021, the issuer updated the previous (2017) site restoration plan and associated costs according to regulatory timelines. The updated restoration plan was approved by the MERN on August 12, 2021. The estimated closure cost in the updated plan is \$2,908,600, which takes into consideration the 2021 activities.

Also in 2021, the issuer received the potable water well permit for the mine site, and in September 2022, the issuer received the potable water treatment and distribution permit (installation not done yet, internal communication, December 2022).

4.7 Communication and Consultation with Communities

Wallbridge conducts consultation activities with the Cree communities of Waskaganish and Washaw Sibi, and the Cree Nation Government. It also consults with the Algonquin Abitibiwinni First Nation through weekly meetings, site visits and monthly bulletins. In addition, Wallbridge follows a formal consultation plan and schedule developed as part of the 2019 ESIA process. The plan aims to identify and communicate with potentially interested and/or impacted First Nations and stakeholders. The First Nations consultation activities include:

- Meetings and traditional knowledge workshops with the Tallymen;
- · Meetings with the First Nation leaders;
- Participating in a mining workshop and community feast in Waskaganish;
- Project update bulletins;
- Weekly scheduled meetings with each community and other frequent discussions as needed;
- Assisting with business development and employment opportunities;
- Site visits; and
- Assisting local Tallymen by providing assistance or accommodation when needed.

Wallbridge's hiring and contracting policy is to hire First Nations and local community members or service providers when possible.

Consultation activities with the municipalities, associations, organizations and political stakeholders have included project update correspondence, meetings with the municipalities and their chambers of commerce, and meetings with interested organizations.

Wallbridge actively collaborates with the town of Matagami, the Société de Développement de la Baie-James, the Société du Plan Nord and the Cree Nation Development Corporation to identify opportunities for employment and infrastructure development projects in the vicinity of the Property. On March 1, 2021, the issuer committed to funding up to \$1.5 million (subject to conditions) for improvements on the access road from Matagami. The total road improvement project cost is estimated to be \$6,500,000, with the balance of the costs to be contributed by the Government of Quebec. Wallbridge made the first payment of approximately \$60,000 in 2022, with the balance of the commitment expected to be paid in 2023. The project is carried out by the Société du Plan Nord and the Société de Développement de la Baie-James.

In 2021, Wallbridge also began constructing a Cultural Centre designed to recognize the differences between the three Indigenous communities with whom Wallbridge works closely. The CSAP was carefully designed and constructed in partnership with Cree and Algonquin community members to include key elements. Wallbridge introduced several awareness initiatives, including a Cultural Sensitivity and Awareness Program ("CSAP").

On August 3, 2022, Wallbridge signed a Pre-Development Agreement ("PDA") with the Cree Nation of Waskaganish, the Cree Nation of Washaw Sibi, the Grand Council of the Crees (Eeyou Istchee) and the Cree Nation Government. This agreement notably provides for enhanced Cree involvement in business and employment opportunities flowing from the Fenelon Gold Project, the implementation of a jointly developed Cultural Sensitivity Awareness Program, and the establishment of a cultural centre at the Fenelon

camp to sensitize workers to Indigenous realities and culture and to promote a working environment characterized by mutual respect.

In addition, Wallbridge also published its inaugural sustainability report in 2022. The aim was to provide transparency on how it approaches the environmental, social and governance ("ESG") matters that are important to its employees, communities, shareholders and other stakeholders.

In 2022, Wallbridge's community engagements included:

- Significant employment and contracting opportunities for all three communities
- A signed PDA with Washaw Sibi & Waskaganish
- PDA discussions with Pikogan
- Timely consultations on proposed mineral exploration programs
- A CSAP to present historical and current aspects of Indigenous life, including print and online instruction and various cultural events at the cultural centre.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Accessibility

The main access to the eastern part of the Property (Figure 5.1) is via Highway 109 from Amos, which heads north to Matagami. From this highway, the drive is 13 km west along the road leading to the former small mining town of Joutel, then 51 km northwest on the Selbaie paved road (N-810). Between the Km 122 and Km 123 markers, a year-round forestry road provides access to the Fenelon camp on the Property, 21 km from the junction. The old open pit and decline ramp are located 6 km west of the Fenelon camp.

In 2021, Wallbridge appointed Norinfra to conduct a preliminary study on the repairs needed for the existing 19.7 km access road between the camp and the paved road N-810. The mandate included the 5-km access road between the camp and the mine site. At the effective date of this report, Wallbridge was still reviewing the study (internal communication, December 2022).

The western part of the Property is accessible via Highway 393 from Rouyn-Noranda, heading north to LaSarre and continuing on Route des Conquérants and Highway 810. Different parts of the land package are accessible via logging roads that spur off Highway 810.

5.2 Climate

The region experiences a typical continental-style climate, with cold winters and warm summers. Climate data from the nearest weather station in Matagami indicate that daily average temperatures range from -20°C in January to 16°C in July (Environment Canada, 2012). The coldest months are December to March, during which temperatures are often below -30°C and can fall below -40°C. During summer, temperatures can exceed 30°C. Snow accumulation begins in October or November, and snow cover generally remains until the spring thaw in mid-March to May. The average monthly snowfall peaks at 65 cm in February, and the yearly average is 314 cm (Environment Canada, 2012).

Exploration, mining and drilling operations may be generally carried out year-round with some limitations in specific areas. Surface exploration work (mapping, channel sampling) should be planned from mid-May to mid-October. Lakes are usually frozen and suitable for drilling from January to April. The thick overburden can make conditions difficult when the snow melts in May.

5.3 Local Resources

The Property area is well-serviced by the mining supply sector and processing facilities. Matagami, about 75 km east-southeast of the Property, is the closest municipality, with a population of 1,400 (2016). It also has the nearest hospital, an airstrip and access to the CN rail line. The town of Amos is a major supply and service centre, with a population of 12,800 (2016). It also has a regional hospital. The nearest helicopter base is in La Sarre, located 140 km south of the Property. The nearest regional airport is in Val-d'Or, with daily flights to various destinations.

Qualified personnel can be found throughout the Abitibi and Nord-du-Québec regions (Val-d'Or, Rouyn-Noranda, La Sarre, and Chibougamau) due to its rich history of forestry, mineral exploration and mining production.

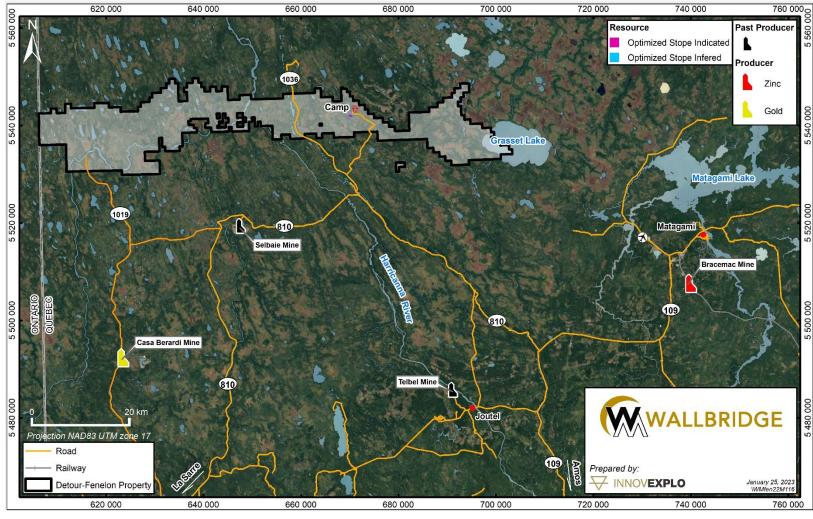


Figure 5.1 – Access and waterways of the Detour-Fenelon Gold Trend Property and the surrounding region

5.4 Infrastructure

The nearest high-voltage power line is at the former Selbaie mine, approximately 20 km south of the Property. Two generators are used on the site (1200 kW and 800 kW). In 2021, the issuer entered into discussions concerning its future interest in connecting the Fenelon mine site to Hydro-Quebec's transmission grid. At the effective date of this report, the discussions are still under review (internal communication, December 2022).

There is ample water on or near the Property to supply a mining operation. The water is non-potable. On October 6, 2021, the issuer received a Certificate of Authorization ("CA") for water withdrawal (20.6 m³/day). At the effective date of this report, the issuer is preparing the application for a water distribution permit.

The Fenelon camp can accommodate up to 155 people. Wallbridge currently has 140 people, on average, working at the site. The facilities include a dry that can accommodate 200 people, a kitchen and dining room, a recreation facility and a nurse's office. An onsite septic system was built in the summer and fall of 2021 following an amendment to the CA to manage the camp's sewage system received on May 17, 2021.

Other infrastructure includes trailers housing the administration office, a foldaway garage, a core shack, a propane and fuel farm, a ventilation and heating system, and a water treatment facility.

The historical Fenelon open pit is used as an ore pad and waste pad area. The site does not have an ore processing facility, heap leach pads or a tailings storage area.

An exploration camp on the Martiniere Block dates back to the Balmoral period. It sits where the historical Martiniere drill core is stored. The helicopter pad is still being used. The core shack and prospector tents (for accommodation and offices) would need investment and repairs to be functional for daily use. However, this should not be necessary as all activities are coordinated from the Fenelon camp.

No infrastructure is present on the other claim blocks.

5.5 Physiography

The Property has an extensive cover of Pleistocene glacial sediments ranging from 5 to 117 m thick. Most of the area is covered by swamps and forests composed of spruce, fir and pine. Some areas of the Property have recently been logged and partly revegetated. The minimum and maximum elevations on the Property are 250 masl and 320 masl, respectively.

6. HISTORY

The history of the Property stretches over a 60-year period, from the late 1950s to the present. The Property consists of eight (8) claim blocks representing former mining properties. The boundaries and names of those properties have changed over time following ownership (and/or option) changes, the abandonment and/or addition of claims, or changes to mining title status when claims were converted into mining leases.

All the claim blocks have been the subject of multiple exploration programs, including prospecting and geological mapping, geophysics, geochemistry and drilling. Drilling has ranged from the exploration-stage to mineral resource definition. At Fenelon, the drilling programs were conducted from both surface and underground. The Property has also been the subject of a great number of geological studies and reports covering a wide array of topics ranging from local mineral resource and mineral reserve estimates to engineering studies to regional geological surveys and synthesis.

The issuer's exploration work and drilling is presented in item 9 and item 10, respectively.

6.1 Fenelon Block

This review summarizes all work and activities completed on the Fenelon claim block by the previous owners. Most of the information in this section was obtained from Richard et al. (2017) and Faure et al. (2020) and from assessment ("GM") reports in the SIGEOM database.

Table 6.1 summarizes the most relevant historical work.

Table 6.1 - Historical work on the Fenelon Block

Year	Owner Description of work		Highlights / Significant results	Reference
1981-1982	Teck Explorations Ltd Ground Pulse EM survey and MaxMin II HLEM; Mag survey; DIGHEM survey; drilling		Evaluation of conductivity areas and possible follow-up drill targets. Drill Hole GB-68-1 (105.16m): best intersection was 0.58 g/t Au over 0.51 m.	Thorsen 1981a, 1981b, 1982a, 1982b
1986 -1991	Morrison Minerals Limited	Heliborne Mag and EM surveys (251 line-km, incl. the current Fenelon Mine Property); Ground EM and Mag surveys; Ground Max- Min and Total Mag (16.1 line-km)	Several interpreted EM conductors. Follow-up on Mag and EM anomalies from the 1986 survey. Strong conductor identified on the flank of a strong Mag anomaly; deemed a favourable gold target.	Boustead, 1988; Turcotte and Gauthier, 1989; Kenwood, 1991
1993	Cyprus Canada Inc.	Follow-up drilling (1 drill hole) on HLEM conductor	Most significant result of 2.84 g/t Au over 0.95 m (185 m) in drill hole FA93-1. Pyritic sediments returned anomalous values for As (up to 1,800 ppm), Cu (537 ppm) and Zn (3,840 ppm).	Broughton, 1993
1994		Ground Mag survey and HLEM survey	Survey data helped identify new drill targets.	Guy, 1994

Year	Owner	Description of work	Highlights / Significant results	Reference
1994		Follow-up drilling (8 drill holes) on 1993 drill results	Drilling confirmed a favourable geological environment for gold mineralization. Most significant drill result: FA94-4 (Discovery Zone): 42.6 g/t Au over 6.7 m (uncut), including 144.5 g/t Au over 2.1 m (uncut); anomalous Cu also present (0.2%-1% Cu). Other results included: FA94-5: 40.73 g/t Au over 0.5 m; FA94-8: 19.8 g/t Au over 5.2 m; FA94-6: 5.94 g/t Au over 0.5 m; FA94-7: 3.74 g/t Au over 1.5 m	
1995		Drilling (57 drill holes for 13,374m)	Visible gold observed in 18 drill holes. Best results: FA-95-10: 14.24 g/t Au over 13.9 m; FA-95-13: 9.78 g/t Au over 7.2 m; FA-95-23: 13.74 g/t Au over 6.8 m; FA-95-60: 37.48 g/t Au over 6.99 m.	Needham and Nemcsok, 1995
1995		Borehole gyroscopic survey	Survey found to be unreliable in establishing drill holes deviation due to host rock magnetics.	
1995		IP orientation survey on Discovery Zone: 3.5 line- km	Discovery Zone interpreted to be associated with a "shoot" running off a strong resistivity high adjacent to a strong chargeability anomaly; correlates with a moderate magnetic low break in both ground and airborne Mag surveys.	Lortie, 1995
1995-1996		IP survey (183 line-km), HLEM survey (31 line-km), Mag and VLF surveys (241.7 line-km); Drilling (33 drill holes for 9,234.4 m; 2 drill holes for 540.4 m outside the Discovery Zone)	Objective was to define new targets similar to the Discovery Zone. Best result from the drill program: 48.56 g/t Au over 0.59 m.	Needham and Nemcsok, 1996; Boileau and Lapointe, 1996
1996-1997	Fairstar Exploration Inc.	1996-1997 drilling: 71 drill holes totalling 14,410 m	Best results: FA-97-104: 83.4 g/t Au over 0.70 m FA-97-105: 74.2 g/t Au over 0.60 m FA-97-112:17.5 g/t Au over 1.75 m FA-97-123:124.7 g/t Au over 1.60 m FA-97-135: 109.5 g/t Au over 4.30 m	Kelly et al., 1997

Year	Owner	Description of work	Highlights / Significant results	Reference
1997		Geotechnical work Detailed seismic refraction survey 5 drill holes to test the physical characteristics of the overburden	The new model of the Discovery Zone greatly enhanced the understanding of its structure and geology. It was thought it would facilitate the future task of extending the zone at depth and along strike.	Kelly and al., 1997; Poulin and Goupil, 1996
1997		MAG survey IP survey Drilling (39 drill holes for 9,426.6 m).	Tested the potential of other areas in the FAJV.	Boileau, 1997
1997		PFS report on Discovery Zone by CHIM International		Fairstar press release of
1997		Metallurgical testing (20 kg representative samples)	Gold recovery between 96.5% and 99.1%	Nov. 13, 1997
1998		Drilling (6 drill holes, 191 m).	FA-98-202: 31.6 g/t Au over 2.4 m; FA-98-203: 9.55 g/t Au over 1.8 m; FA-98-204: 44.83 g/t Au over 3.65 m and 94.9 g/t Au over 5.8 m; FA-98- 205B: 22.7 g/t Au over 0.8 m.	Guy and
2000		Drilling 24 NQ-size drill holes, 992 m.	Results indicated highly erratic; all veins indicated a lack of continuity. Drilling on vein structures between drill holes failed to intersect the vein as predicted in the proposed model.	Tims, 2000
2001	International Taurus Resources Inc.	Bulk sampling program, including overburden pad preparation and overburden stripping.	18,966 t of ore blasted; 13,835 wet metric tons (13,752 dry metric tons) milled at Camflo for 132,039 g (4,245 oz) of gold produced for a recovery grade of 9.60 g/t Au (recovery of 97%).	Veilleux, 2001; Guy, 2001
		Mapping and sampling (74 surface channel samples).	1S zone: channel samples grading as high as 187.96 g/t Au and averaging 111 g/t Au. 0S, VI and 2S zones: channel samples with higher gold values of up to 926.75 g/t Au, averaging 537 g/t Au.	Veilleux, 2001; Guy, 2001

Year	Owner	Description of work	Highlights / Significant results	Reference
		MRE and scoping study.		Poos et al., 2002
2001		Structural study and survey of the stripped and open pit area; 964 channel samples (1,000 m).	Some anomalous zones with gold values from 100 ppb to 1,228.6 g/t Au.	Desrosiers.
2002		Drilling program. 41 NQ short drill holes (FA-02-207 to FA-02-248) for 2,354 m.	FA-02-207: 46.71 g/t Au over 2.0 m; FA-02-213: 6.40 g/t Au over 4.04 m; FA-02-208: 41.09 g/t Au over 1.48 m; FA-02- 212: 3.34 g/t Au over 1.63 m	2003
2003	International Taurus Resources Inc.; Fairstar Exploration Inc. Updated geological model and MRE (SRK). Technical report filed (NI 43-101).			Couture and Michaud, 2003
2003		Preliminary Assessment Study ("PA") non-compliant with NI 43-101	PA was used to generate possible scenarios for internal planning and budgeting purposes.	Drips and Bryce, 2003, 2004
2003	International Taurus Resources Inc.	Exploration program: portal and decline (326 m) >745 m of drifts and crosscuts developed, and 254 m of raises driven in ore; Samples: 359 from faces, 258 from test drill holes, 149 from muck. Drilling: 54 NQ-size DDH (3,966 m) drilled from the northern access drift on level 5213; 8 DDH (BZ-04-001 to BZ-04-029; 78 m) drilled from production drifts.	Development in mineralized material generated a volume of 5,374 t at 16 g/t Au (mostly muck from sills and breasts) over widths of at least 1.5 m. Lowergrade material also recovered (800 t at 3.0 g/t Au) in cross-cuts averaging 4.5 m wide.	Pelletier and Gagnon, 2004
2004		InnovExplo produced an updated MRE for Central Discovery Zone.		Pelletier and Gagnon, 2004
2004		Bulk sample at Camflo Mill facility: 8,169 t of underground material was milled.	High-grade material represents 5,764 t at 12.41 g/t Au; low-grade material 2,405 t at 5.07 g/t Au. Four (4) bricks cast: 3,427.6 oz	St-Jean, 2004

Year	Owner	Description of work	Highlights / Significant results	Reference
			containing 2,595.5 oz of gold. After casting the last brick, Camflo Mill recovered a 922 g button and a 207 g button after cleaning the furnace. Mill malfunction on Sept. 11 caused gold loss (about 90 oz) over 6 hrs. Mill feed grade was estimated at 10.25 g/t Au, with a recovery of 95.5%. After the final inventory, the calculated grade was 10.70 g/t Au, including gold lost in tails during milling. If the 90 oz lost to mill malfunction is included in mill reconciliation, total gold recovery is close to 97%.	
2005		Publication of NI 43-101 compliant technical report to present the updated MRE.		Pelletier and Gagnon, 2005
2005		Independent (InnovExplo) relogging and drill core sampling program.	Results of a geological review and sampling program were combined with geophysical survey data (Mag, EM and IP) and incorporated into MapInfo (GIS database) at the property scale to completely revise the surface geological map of Fenelon A Property (lithologies, favourable areas, faults, fold structures).	Théberge et al., 2006
2005-2006	American Bonanza Gold Corp.	Drilling and sampling program: 42 NQ-size drill holes (12,831.8 m); 2,008 mineralized samples. Lithogeochemical study: 359 whole-rock samples.	Confirmation of epithermal setting for the Discovery deposit in the southern part of the property. Significant gold results obtained: FA-05-255 with 4.44 g/t Au over 0.80 m, 4.25 g/t Au over 3.90 m and 3.40 g/t Au over 0.95m FA-06-256 with 10.75 g/t Au over 0.50 m and 42.80 g/t Au over 0.50 m FA-05-258 with 9.70 g/t Au over 1.90 m Discovery and confirmation of a VHMS setting in the northeastern part of the property.	Brousseau et al., 2007; Le Grand, 2008
2006-2007		Exploration drilling program 4 drill holes (959 m	No significant values.	Le Grand, 2008

Year	Owner	Description of work	Highlights / Significant results	Reference
2011	Balmoral Resources Ltd	41 drill holes (8,580 m): 35 drill holes to test lateral and down-dip/plunge extensions of Discovery Zone; 6 drill holes at eastern and northern ends of Discovery Zone.	Several high-grade gold intercepts confirmed the high grades of the Discovery Zone. Drilling extended some mineralized veins in the zone along strike and to a vertical depth of 250 m.	Balmoral press release dated January 2, 2012
2012	Balmoral Resources Ltd	2 drill holes totalling 753 m (GR-12-11 and GR-12-12)	Holes tested for Grasset-style mineralization at the intersection of major WNW-ESE shears and along the contact between sedimentary and mafic volcanic and intrusive rocks. The highest value was 0.343 g/t Au over 0.99 m in hole GR-12-11.	Perk and al, 2012
2019	Balmoral Resources Ltd	13 drill holes (4588.7 m): company's first drill testing of the Area 52 gold target.	The discovery of a new, near- surface, high-grade gold zone located proximal to the SLDZ. Best result was drill hole A52-19- 03 5.00 g/t Au over 9.65 m, including 14.03 g/t Au over 3.29 m.	Balmoral press release dated September 16, 2019
2020	Balmoral Resources Ltd	8 drill holes (3535.0 m): new, very high-grade gold discovery on the Fenelon Property: the Reaper Zone	Several high-grade gold intercepts confirmed the new Reaper Zone. Best result was 307.89 g/t Au over 2.97 m, including 858.00 g/t Au over 1.06 m.	Balmoral press release dated April 30, 2020
2021	Wallbridge Mining Co. Ltd		Publication of NI 43-101 compliant technical report to present the maiden MRE.	Pelletier and Nadeau- Benoit, 2021

6.2 Grasset Block

The information for the Grasset claim block was obtained from Richard and al. (2017). A summary of the relevant historical work is presented in Table 6.2.

Table 6.2 - Historical work on the Grasset Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1938-1939	Ministère des Mines	Filed mapping and sampling, discovery of a gold-copper showing: 1 grab sample of 5.55 g/t Au.	RG 012
1956	Subercase Syndicate	A 0.9-m pit was blasted to expose the gold-copper showing. 4 drill holes (290.8 m) to test lateral and depth extensions. Best result: S-2: 0.37% Cu over 0.5 m.	GM 05226

Year	Owner	Description of work / Highlights / Significant results	Ref.
1957-1958	Orchan Mines Ltd	An aeromagnetic survey and a ground geophysical survey using a McPahr R.E.M. and a radar magnetometer carried out by Federal Department of Mines and Technical Surveys, outlining 2 zones of magnetic highs and 2 zones of electrical conductivity.	GM 07808
1959		A dual-frequency EM survey and Mag traverses carried out by the Federal Department of Mines and Technical Surveys, outlining 5 conductors.	GM 09009-A
1959	Andersen Prospecting Trust; United New Fortune Mines Ltd; A. D Hellens; St-Mary's Explorations Ltd; Grasset Lake Mines Ltd; Nordex Development Company Ltd; Nipiron Mines Ltd; Consolidated Mining and Smelting Company of Canada Ltd; Head of Lakes Iron Ltd; Westfield Minerals Ltd; Daniel Mining Company Ltd; Norsyncomague Mining Ltd; St-Mary's Explorations Ltd; Newlund Mines Limited; Noranda Exploration Company Ltd	Interest in the gold-copper showing and new geophysical data (Federal Department of Mines and Technical Surveys) resulted in the staking of many mining titles by several companies. Several airborne and ground geophysical surveys (Mag and EM) were carried out on many parts of the current Grasset claim block by different companies.	GM07722; GM 08620-A; GM 09352; GM 11467; GM 10351; GM 09266; GM 09183-A; GM 09183-B; GM 09078; GM 09076; GM 09007; GM 08926; GM 08823; GM 08881; GM 08878; GM 08818
1959	Grasset Lake Mines Ltd	Drilling: 5 drill holes (GL-1 to GL-5, 894 m) to test geophysical anomalies. Mineralized zones of massive to disseminated pyrite, some pyrrhotite and specks of chalcopyrite were observed in tuff.	GM 08917
1959	Orchan Mines	Drilling: 6 drill holes (K-1 to K-6, 508.3 m) to test geophysical anomalies. No assay results are available.	GM 09009-B
1959	Newlund Mines Ltd	Drilling: 2 drill holes (NE-1 to NE-2, 321.9 m): 2 sulphide-rich horizons (4.5m thick) carrying 50% pyrrhotite and pyrite with specks of chalcopyrite, and 2 samples sent to Swastika Laboratories Ltd, returning up to 2 g/t Ag, 0.11% Cu and 0.05% Zn, no nickel or gold.	GM 09119
1960	Nipiron Mines Ltd	Drilling: 4 drill holes (NP-1 to NP-4, 486.5 m) to test geophysical anomalies. Drill hole NP-4 2.06 g/t Au over 1.1 m.	GM 10231-A; GM 10231-B
1959	Noranda Exploration Company Ltd	Drilling: 4 drill holes (G-2 to G-4) totalling 549.3 m. No mineralization was reported.	GM 10165-E
1960	Hudson Bay Exploration and Development Ltd (optioned	Drilling: 5 drill holes (Pete-1 to Pete-5) totalling 492.5 m near Peter Lake. Many	GM 50912; GM 10848

Year	Owner	Description of work / Highlights / Significant results	Ref.
	by Northwoods Exploration Ltd)	shear zones accompanied by quartz veining were reported. Disseminated to massive pyrite and pyrrhotite with rare specks of chalcopyrite were observed in volcanic rocks. No assay results reported or available.	
1964	John I. Cummings	A ground EM and Mag survey was performed. The results indicated that the mineralized zone could have an apparent length of approximately 120 m and a maximum width of 6 m.	GM 15869
		Ground EM and Mag surveys performed. EM survey outlined three conductors coincident with Mag anomalies.	GM 30181
1974	Musto Explorations Ltd	4 drill holes (MU-1 to MU-4) totalling 591.1 m to test previously identified geophysical anomalies. No significant assay results were reported.	GM 30182
1974/ 1975	Selco Mining Corporation Ltd	A ground Mag and EM survey was performed over 6 grids. Results defined conductors on 3 grids. Drilling: 2 drill holes (G-20-1 and G-18-1) totalling 218.9 m, both passing through a sequence of felsic and intermediate tuff. A mineralized zone was encountered, corresponding to disseminated to massive pyrite and pyrrhotite with minor flecks of chalcopyrite. This zone assayed anomalous values for zinc, copper and silver over 6.1 m, but no gold values. 2 drill holes (G-17-1 and G-11-1) totalling 214.3 m. A horizon of massive sulphide was encountered in G-17-1, containing pyrrhotite and pyrite with traces of chalcopyrite. No significant assay results. G-11-1 cut a sequence of andesite and sericite schist. No mineralized zones were identified.	GM 30031, GM 30889; GM 30888, GM 30884; GM 31192
1977 / 1978	Amoco Canada Petroleum Company Ltd	A ground Mag and EM survey was performed to follow up on an anomaly identified by an airborne survey carried out in 1977; 4 drill holes totalling 552 m. Minor horizons with up to 40% pyrite pyrrhotite and minor chalcopyrite were observed in MQ-78-13-1 and MQ-78-13-2. These horizons returned anomalous values for zinc, copper and silver, but no gold. MQ-78-32-1 intersected a horizon of massive sulphide (80% sulphide (pyrite-pyrrhotite)) with anomalous values for zinc, copper and silver, but no gold.	GM 33676, GM 36103
March 1981	Teck Exploration Ltd	1 drill hole (SU-4-1) totalling 91.4 m. No significant mineralized zone was observed. One graphitic argillite horizon was reported.	GM 37923; GM 37924; GM 37925; GM 37541; GM 40603; GM 40493

Year	Owner	Description of work / Highlights / Significant results	Ref.
1984	Detour Syndicate Ltd	Re-sampling of cores from Nipiron Mines Ltd, Grasset Lakes Mines and on the Discovery gold-copper showing. NP-4 (2.06g/t Au over 1.1 m) was confirmed. Re-sampling results returned 2.57g/t Au over 0.9 m. The presence of a major zone of semimassive to massive pyrite-pyrrhotite mineralization was noted in altered tuffaceous rocks. 11 grab samples of heavy sulphide mineralization were analyzed, but the gold values only reached 51 ppm Au. Unable to duplicate the previously reported gold values of up to 5.5 g/t Au.	GM 42312
	Minerex Resources Ltd	Ground Mag and HEM surveys were performed. The surveys outlined 6 conductors, of which, 5 correlated with Mag anomalies.	GM 43327
	Aiguebelles Resources Inc.	Ground Mag and HEM surveys were performed. The surveys identified many Mag and EM anomalies.	GM 44450;
1986	Ram Petroleums Ltd	A compilation of past exploration work was carried out. The most significant conclusion derived from the study was that the property contained a major interpreted "structural break" based on geophysical results. The structure was considered to possibly be a major structure associated with gold-bearing systems. A combined heliborne Mag and EM survey was performed, identifying both types of anomalies.	GM 44449
		Airborne total field Mag and an MK VI Input surveys. Based on the results, one grid was cut and Mag and EM (MaxMin II HLEM) surveys were carried out to locate the EM conductors identified.	GM 44883; GM 44882
1986	Nodle Peak Resources Ltd	A drilling program was designed on the basis of the above surveys to test linear EM conductors. A total of 1,629.2 m was drilled in 9 drill holes (N-1 to N-8, and N8A). Drilling intersected two structural zones characterized by graphitic fault gouge with graphitic microcrystalline quartz, sericite and chlorite schists, shearing, and brecciation. Gold values associated with these structures were low (up to 420 ppb).	GM 44525
1988		The results of 4 RC drill holes indicated that Max-Min II HLEM anomalies from previous surveys were primarily due to conductive overburden effects and not to bedrock sources. Only 4 abraded gold grains were observed in the till samples.	GM 48294

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Morrison Minerals Ltd	A combined heliborne Mag and EM survey was performed. EM and Mag anomalies were outlined by this survey, and some conductors were interpreted to be of bedrock origin.	GM 46741
1989	Noranda Explorations	A ground Mag and HEM survey was performed on two grids. Ground geophysical anomalies were noted.	GM 48781
		Ground Mag and IP-resistivity surveys were performed.	GM 53934; GM 53933; GM 53935
1995	Globex Mining Enterprises Inc.	8 drill holes (S-96-1 to S-96-8) totalling 1,444.1m to test the defined IP targets. The drilling program indicated the property hosts a series of fault systems and that a significant regional-scale iron carbonate alteration was present. No significant gold-bearing mineralization was intersected. The best result was 76 ppb Au.	GM 53934
		Ground total field Mag, EM (HLEM) and IP-resistivity surveys were performed.	GM 54040; GM 54041
1996	Cyprus Canada Inc. and Fairstar Explorations Inc.	3 drill holes (SC96-1, DT96-1, and DT96-2) totalling 647m to test geophysical targets. Moderate to strong shearing was encountered in 4 of the 5 drill holes. The highest gold value obtained was 55 ppb Au. DT96-2 intersected 209 g/t Ag over 0.3m within a quartz vein. Anomalous copper and zinc values were reported in drill hole DT96-1 and DT96-2.	GM 54040
1998		Magnetic and EM surveys (HLEM) were performed.	GM 58336; GM 55992; GM 56062
2010		Staking of what is now the Grasset claim block.	
		Heliborne EM survey was performed. Several strong Mag and conductive trends identified.	GM 66705; GM 66706
2011	Balmoral Resources Ltd	5 drill holes (GR-11-01 to GR-11-05). The 2011 drill program intersected an undiscovered gold-bearing zone and confirmed the location of a major shear zone along geological domain boundaries. Drill hole GR-11-01 returned 33 m grading 1.66g/t Au, including 4.04 m grading 6.15g/t Au and 5.00 m grading 4.18g/t Au. The gold mineralization is located along the SLDZ.	GM 66784
2012		2 drill holes totalling 741 m (GR-12-06 and GR-12-07) were drilled along the SLDZ GR-12-07 intersected 9.47 g/t Au over 0.55 m.	GM 67198
		Soil sampling program: 225 samples collected.	GM 67158

Year	Owner	Description of work / Highlights / Significant results	Ref.
		Ground-based IP-resistivity and Mag surveys were performed. The results of the survey show a large chargeability high at depth over much of the survey grid with an accompanying magnetic high trending roughly east-west.	
		Soil sampling program: 349 samples collected.	GM 67765
2013		7 drill holes totalling 2,005.15m on Grasset (GR-14-21, GRX-14-02 to GRX-14-07). GR-14-21 tested gold mineralization 50m down dip and 20m to the west of the mineralized zones intersected in GR-11-01 proximal to the interpreted boundary of the Sunday Lake deformation zone. The drill hole intersected an 11.01m zone of 0.79 g/t Au.	GM 69006
		An airborne survey was performed over portions of the property that had not previously been surveyed, and a Nickel Test grid was flown over the area of the Grasset Discovery. Magnetic trends on the Grasset North and Grasset Gap grids display parallel curved linear total field magnetic highs that follow a pattern consistent with the regional-scale folding of mafic members of the Manthet Group.	Venter et al., 2014
		A ground-based IP-resistivity survey was performed. The survey consisted of a small addition to the 2013 grid and a separate survey on the eastern part of the property near Lac Grasset, covering an area identified by the 2011 airborne survey as hosting both Mag and EM anomalies. Several chargeability anomalies of potential interest were identified by this survey. A well-defined east-west-trending chargeability high is present along the southern margin of the grid and has been interpreted by Balmoral to be a potential sulphide-rich horizon.	GM 69007
		An IP survey covering a series of very strongly folded and highly magnetic rocks located approximately 12 to 17km east of the Grasset deposit was performed. A large number of very strong IP responses have been detected, associated both with the conductive zones and elsewhere along this trend.	GM 69257
		10 drill holes totalling 2,435.7m (GRX-15-11 to GRX-15-20): 6 drill holes on the Grasset Gap VMS target area and 3 on the Grasset Hinge area. The Grasset Gap area is marked by a 7.0 km trend of stratiform airborne EM conductors located 14 to 21 km east of the Grasset deposit. Drilling intersected broad	

Year	Owner	Description of work / Highlights / Significant results	Ref.
		zones of massive to semi-massive sulphide mineralization, locally associated with anomalous levels of copper, lead, zinc and silver. Geologically, the Grasset Gap Trend exhibits similarities to the West Camp in the nearby Matagami VMS district. The Grasset Hinge area is a strongly folded sequence dominated by mafic intrusive and extrusive rocks located northeast of the H3 horizon. All samples (163) collected from 2 of the 3 drill holes in this area, GRX-15-19 and GRX-15-20, returned gold values above detection limits.	
2017		4 drill holes totalling 1,030.8m (GRX-17-25 to GRX-17-28). Drilling took place mainly proximal to the Lower Detour Deformation Zone and on identified conductive geophysical anomalies. No significant alteration or mineralization were intercepted.	GM 70311

6.3 Martiniere Block

The information in this section is mainly based on the 2017 NI 43-101 report by Equity Exploration Consultants Ltd (Mumford and Voordouw, 2017).

The current amalgamated Martiniere claim block was first established by Cyprus Canada Inc. in 1994. Pre-1994 exploration work in the area completely to partially overlapped the current claim block boundaries. In 1998, Cyprus Canada Inc. optioned the claim block to International Taurus Resources Inc. and was subsequently purchased by them. A merger in 2004 changed the ownership to American Bonanza Gold Corp. In November 2010, Balmoral purchased the rights to acquire a 100% interest in the Martiniere claim block from American Bonanza Gold Corp., and the purchase was completed in 2013.

Table 6.3 summarizes the most significant historical work on the Martiniere Block.

Table 6.3 – Historical work on the Martiniere Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Kateri Mining Co.	Airborne EM and 2 drill holes totalling 155 m. One drill hole intersected a diorite sill with disseminated pyrite and quartz stringers that returned trace Au.	GM 08217-A; RP458
1959	Monpre Mining Co.	Ground EM and 3 drill holes. The drill holes were collared 6.5 km NE of the current Martiniere claim block boundary and intersected sheared mafic volcanic and graphitic schist with 2-3% sulphide, with no Au returned in the assays.	GM 08704, GM 09755; GM 10898
	Paudash Lake Uranium Mines Ltd	Airborne EM, ground EM, Mag, gravity.	GM 09563; GM 13018
1975/1977	Noranda Exploration Co.	Ground EM, Mag. Geological mapping. 1 drill hole (77-1) drilled in what is currently the NW corner of the	GM 31645, GM 32173;

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Ltd	Martiniere claim block. This drill hole encountered only quartz gabbro with a few specks of chalcopyrite near the end of the drill hole.	GM 33366; GM 33119
1981/ 1984	Teck Exploration Ltd	Ground EM, Mag. Several holes were drilled, one of which (GB-60-1) is located within the current boundaries of the Martiniere claim block and another (GB-61-1), which is collared just south of what is now the Bug Lake Trend. GB-60-1 tested an EM conductor and intercepted altered, carbonatized, mafic volcanic intercalated with pyritic graphitic argillite and minor tuffaceous horizons. GB-61-1 cut through mafic volcanic and argillite but failed to intersect gold mineralization.	GM 37880, GM 37882, GM 39439, GM 39438; GM 40023, GM 41127; GM 41438
1982/ 1987	Queenston Mines Ltd	Mapping, ground EM, Mag. Identification of a series of NW/SE-trending EM anomalies on the Lac du Doigt Deformation Zone. 26 drill holes drilled to the south of the Martiniere claim block, with the exception of DL-86-20. The latter was collared near the center of the Martiniere claim block and intersected mafic volcanic and graphitic argillite with local sulphide enrichment (pyrite, pyrrhotite, chalcopyrite, arsenopyrite) and up to 0.3 g/t Au over 1.0 m. Airborne gravity, Mag, VLF.	GM 39928, GM 42172; GM 44767; GM 46476
1984		Mapping, soils	GM 41575
1984/ 1985		Ground EM, Mag	GM 41440, GM 42382
1985/ 1988		Ground IP, Mag	GM 42421, GM 46279
1985	Noranda Exploration Co. Ltd	5 drill holes (LAM-85-01 to -05) on the Bug Lake prospect (NW part of the Martiniere Block). Several irregular, NW-trending, veins and shear zones hosted in fine-grained gabbroic rocks were identified. Best result returned 2.1 g/t Au over 1.1 m	GM 42615
1988		5 drill holes (LAM-88-06 to -10) on the Bug Lake prospect (NW part of the Martiniere Block). Best result returned 3.6 g/t Au over 1.5 m.	GM 46833
1987		Ground gravity, Mag	GM 46076
1996/ 1998	Cyprus Canada Inc.	Ground IP, Mag. Identification of a series of NE to EW trending structures on and around the Martiniere claim block	GM 54042, GM 54647, GM 55489, GM 55538, GM 55622
1997		4 drill holes (MT97-01 to -04) in the northern half of what is now the Martiniere claim block. No significant mineralization was intersected.	GM 55537

Year	Owner	Description of work / Highlights / Significant results	Ref.
1997		8 drill holes (MD-97-01 to -08) in the southern half of what is now the Martiniere claim block. MD-97-06 hit 12.44 g/t Au over 2.5 m and 1.07 g/t Au over 12.0 m, the most significant discovery of gold on the claim block at that time. This mineralization was hosted in chloritic shear zones with 10-30% quartz + carbonate + pyrite veining and strong silica + carbonate ± sericite ± fuchsite alteration. MD-97-02 intersected a pyritedominant massive to semi-massive sulphide body with negligible gold and base metal contents.	GM 55490, GM 54648, GM 54818, GM 54701
1997		Soil sampling, mapping	
1999	International Taurus Resources Inc.	9 drill holes (MD-99-09 to -17) followed-up on the gold discovery made by Cyprus in drill hole MD-97-06. This program intersected quartz + carbonate veins in the southern part of the claim block, with 5.91 g/t Au over 6.45 m in MD-99-11 and 14.55 g/t Au over 4.2 m in MD-99-13	GM 56816
2000		20 drill holes (MD-00-18 to -29): MD-00-19 intersected 11.12 g/t Au over 1.5 m and MD-00-28 intersected 12.80 g/t Au over 1.5 m and 3.45 g/t Au over 1.0 m	GM 58073
2006	American Bonanza Gold Corp.	9 drill holes (MD-06-01 to -09) to test the high-grade gold intercepts returned by Cyprus and International Taurus. This program extended the MD-00-28 discovery on what became known as the Martiniere West Trend ("MW"), and confirmed the gold intercepts returned from MD-97-06, MD-99-13 and MD-99-14 in the Martiniere Central area	GM 62862
2007		13 drill holes (MD-07-10 to -22) to test for extensions to the mineralized zones and to test IP and Mag anomalies. Almost all drill holes intercepted gold mineralization; best results were returned by MD-07-12 with 7.15 g/t Au over 3.0 m and MD-07-14 with 5.09 g/t over 5.0 m	GM 64281
2012		106 drill holes totaling 20,728 m. Drilling expanded the MW trend and discovered the larger Bug Lake ("BL") Trend. The highlight of this program was the discovery of very high-grade mineralization within the BL Footwall Zone ("BLFZ") with an intercept of 1,25 g/t Au over 0.55 m. The Upper and Lower BL zones were also discovered and returned 5.7 g/t over 42.5 m, 2.9 g/t over 67.0 m and 1.7 g/t over 51.7 m.	GM 67653
2013	Balmoral Resources Ltd	Diamond drilling was performed on the MW and BL trends, in addition to 33 wildcat drill holes spread across the claim block. Results extended mineralization on the BL Trend along a minimum 700 m strike length and depth of 320 m below the surface. Drilling on the MW Trend returned an intercept of 7.99 g/t Au over 28.45 m but otherwise failed to extend high-grade mineralization. Results from these 33 drill holes included 2.25 g/t Au over 24.14 m in MDX-13-13, 12.90 g/t Au over 2.45 m in MDX-13-17 and 2.28 g/t Au over 6.21 m in MDX-13-26.	GM 69210

Year	Owner	Description of work / Highlights / Significant results	Ref.
2014		41 drill holes on the BL Trend and 6 wildcat drill holes. Highlights of this program include the best assay result from the BLFZ, grading 8330 g/t over 0.57 m, in addition to the highest grade returned from the lower steep of the BLFZ (7.71 g/t over 15.56 m), suggesting mineralization stretches at depth. Other significant results include 2.33 g/t Au over 42.01 m from the southern part of the BL Trend and discovery of the mineralized and E-W trending North Swamp–Lac du Doigt fault zones. Wildcat drilling returned several intersections of pyrite-rich massive sulphide with low base metal values.	GM 69087
		A 17.8 km IP survey yielded mixed results, with work on the "VMS1" grid essentially reviving a target that returned negative results the year before, work on the "VMS2" grid confirming the stacked nature and IP response of sulphide lenses and, survey on the conceptual "AU" grid returning essentially no chargeability response whatsoever.	GM 69087
2015		32 infill drill holes, 200 m along the BL trend. This drilling returned a number of mineralized intercepts, including 18.13 g/t Au over 44.45 m in MDE-15-166, 7.07 g/t over 34.44 m in MDE-15-170 and 3.55 g/t over 64.55 m in MDE-15-173. 7 drill holes were also drilled with the aim of expanding mineralization on the BL trend. One such hole drilled at the northern end (MDE-15-200) encountered the anomalously broad and calcite-rich Hanging Wall Zone, returning 0.69 g/t Au over 96.1 m with sub-intervals of 27.3 g/t over 0.81 m, 9.03 g/t over 1.03 m and 12.4 g/t over 0.60 m. Two other holes drilled just south of the infill area (MDE-15-201, 202) returned 2.33 g/t over 11.44 m and 18.85 g/t over 1.28 m.	GM 69310
		An IP survey delineated several chargeability and resistivity anomalies north of the Lac du Doigt area.	GM 69696
2016		37 drill holes (11,879.66 m): the program confirmed continuity and grade within the 240-m-long segment of the Bug South Sub-trend; discovered a high-grade Zn-Pb-Ag zone east of the Bug South Subtrend; and discovered the new Southeast Zone past the southern end of the Bug Southeast Subtrend. Best results were obtained by MDE-16-234A with 64.20 g/t Au over 1.08 m and MDE-16-247 with 13.54 g/t Au over 5.34m.	GM 70684
2017		78 drill holes (27,224.38 m). Discoveries of the BL NW zone which returned gold values (Best result: MDE-17-297A returned 1.02 g/t Au over 67.40m) and extended the BL porphyry to the north. The Horsefly zone was expanded further east. The Lower Detour Deformation Trend was expanded to the west with MDX-16-69 returning 0.73 g/t Au over 26.33 m. The BL north porphyry was expanded 130 m further down plunge. The BL south mineralized zone was expanded to 460 m vertical depth.	GM 70683

Year	Owner	Description of work / Highlights / Significant results	Ref.
		A geological mapping and soil sampling program was performed north of the Lac du Doigt area.	GM 71230
2018		23 drill holes totalling 7,389.60 m. Holes drilled intersected broad veining, alteration corridors and anomalous Au concentrations but assay results did not return anything higher than 1.98 g/t Au over 1.53 m. Drill holes MDE-18-320 and MDE-18-321 confirmed the extension of the Horsefly Zone at depth, with anomalous gold mineralization being intercepted in both drill holes. At BL South, MDE-18-324 and MDE-18-325 intersected broad gold mineralization associated with cruciform-carbonate veining in the footwall portion of the South Zone at vertical depths of approximately 375 and 410 m.	GM 71308
2018		Publication of NI 43-101compliant technical report to present the maiden MRE	Voordouw and Jutras, 2018
2021	Wallbridge Mining Co. Ltd	Publication of NI 43-101 compliant technical report to present the updated MRE	Pelletier and Nadeau- Benoit, 2021

6.4 Doigt Block

The significant historical exploration work on the Doigt claim block consists of geophysical surveys, soil surveys and drilling. A summary of the work is presented in Table 6.4.

Table 6.4 – Historical work on the Doigt Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959-1960	Monpre Mining Co Ltd	6 drill holes (2086 ft, 625 m) tested EM anomalies in the east central part of La Martinière Township and the SE corner of Martigny Township. Best drill hole intersections: 0.02 to 0.08% Cu, 0.00 to 0.05% Zn (DDH1); and 0.04 to 0.14 oz/t Ag/t and 0.12 to 0.15% oz Cu (DDH4).	GM 10850
1975	Selco Mining Corp. Ltd	Ground EM in the Detour-Turgeon area. There were no bedrock conductors detected.	GM 31185, GM31186

Year	Owner	Description of work / Highlights / Significant results	Ref.
2011	Balmoral Resources Ltd	A heliborne VTEM Plus survey was flown over the East Doigt Property. The total survey area was 22.11 km² and the total survey line coverage was 131.6-line km.	GM 66714
2012		Mobile metal ion ("MMI") soil sampling program conducted on two E-W trending lines in late 2012 by Equity Exploration Consultants Ltd. ("Equity") on behalf of Balmoral (Perk and Swanton, 2013c). Results of the survey indicate that there is a moderate gold-in-soil anomaly at the east end of both sampling lines.	GM 67654
2013		Equity conducted a soil sampling program, on behalf of Balmoral that covered parts of the Detour East, Doigt, Martiniere and Harri properties. A total of 36 polymetallic soil anomalies were identified, 2 of them on Doigt.	GM 67745
2013		IP/Mag survey (20,175-line km) delineated 5 zones of weak to strong chargeability, the survey showed the presence of an elongated NE-trending coincident Mag, and resistivity high located centrally on the Doigt Property.	GM 68182
2013		2 drill holes (523 m) completed in the northern part of the Doigt Property. The 2013 drilling program successfully identified the first mineralization found on the property. Best drill hole intersections: 0.81 g/t Au over 0.47 m (DOT-13-02); 0.546 g/t Au over 0.92 m in DOT-13-01, and 10,150 ppm Zn, 2 g/t Ag and 689 ppm Cu over 0.38 m (DOT-13-02).	GM 68187

6.5 Harri Block

The significant historical exploration work on the Harri claim block consists of geophysical surveys, soil surveys and drilling. A summary is presented in Table 6.5.

Table 6.5 – Historical work on the Harri Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959-1963	Monpre Mining Co Ltd, Paudash Mines Ltd (Claims Martin, Monpre Mining Co Itd), Paudash Lake Uranium Mines Ltd	Ground Mag, EM surveys and airborne Mag and gravimetry surveys yielded various geophysical anomalies.	GM 08704, GM 09563, GM 11087- B, GM 13018, GM 09754, GM 08217-B
1975	Selco Mining Corp. Ltd	Ground EM and Mag surveys and diamond drilling. Various geophysical anomalies. No significant drilling results.	GM 31185, GM 31186, GM 31244, GM 31246, GM 31586

Year	Owner	Description of work / Highlights / Significant results	Ref.
1976-1977	Hudson Bay Exploration & Development Co. Ltd and Selco Mining Corp Ltd	EM surveying (various anomalies) and 12 drill holes (no significant results).	GM 31958, GM 31959, GM 31960, GM 32274, GM 32806
1981-1984	Teck Exploration Ltd	Ground EM and Mag surveys (various anomalies) and 32 drill holes (no significant results).	GM 37799, GM 37877, GM 37887, GM 37931, GM 37932, GM 37935, GM 39413, GM 39424, GM 39425, GM 39426, GM 39437, GM 39438, GM 39441, GM 40020, GM 40021, GM 41127, GM 41127,
1986-1988	Exploration Min Golden triangle Inc., Xanaro Technologies Inc., Claims Mattew and Claims Ottereyes	Ground Mag, EM, HEM, IP and airborne EM and Mag surveys yielding various geophysical anomalies. RC drilling yielded significantly anomalous trace element assays (Au, Ag, Cu, Zn, As). Diamond drilling failed to produce significant results.	GM 43386, GM 43451, GM 44045, GM 44468, GM 44469, GM 45309, GM 45979, GM 45981, GM 46137, GM 46175, GM 46855, GM 47615
1991	Minéraux Morrison Ltée, Total Energold Corp.	Ground Mag and EM surveys; various geophysical anomalies.	GM 50524, GM 50567, GM 50673
1993-1996	Cyprus Canada Inc.	Geophysical surveying (ground Mag, EM, HEM and IP/resistivity) and diamond drilling. Various geophysical anomalies. Best drill hole intersections: Drill hole GC-93-1 (288 m) 580 ppb Au in graphitic sediments (GM 52352), drill hole GC95-06 70.10-77.45m 10 to 100 ppb Au and drill hole GC95-07, 155.2-158.5m, 60-160 ppb Au (GM 53674), drill hole GC-93-1, 860 ppb Au in sediments (GM 53923)	GM 52352, GM 53653, GM 53674, GM 53923, GM 53992
1996	Billiton Metals Canada Inc.	Line cutting (7.3 km), IP (6.2 km), 1 drill hole and Pulse EM. No significant values.	GM 54064
1997-1998	Claims Frigon, Explorations Minières du Nord Ltée, Fairstar Explorations Inc.	Geophysical surveying (Mag, IP, IP/resistivity) and 6 drill holes (1178 m). Various geophysical anomalies. Minor pyrite and pyrrhotite explained the IP anomalies. The sulphides were barren of gold.	GM 54906, GM 54907, GM 55422, GM 55617

Year	Owner	Description of work / Highlights / Significant results	Ref.
2006	American Bonanza Gold Corporation	54 drill holes (18,113.9 m).	GM 62991
2008	Claims Tremblay, Exploration MetauxDic	Airborne Mag and EM over two blocks (B and C).	GM 64010
2011		A heliborne VTEM Plus survey was flown over the Harricana Property. Total area coverage for all properties covered by the survey is 60.55 km². Total survey line coverage is 684 line-km.	GM 66710
2011		A heliborne EM survey (1216.2 line-km), including 227 km over Harri.	GM 67280
2013		Soil sampling program (1,854 soil samples). A total of 36 poly-metallic soil anomalies were identified in this way, 26 of which occur on Detour East, 5 on Harri, 3 on Martiniere and 2 on Doigt.	GM 67745
2013	Balmoral Resources - Ltd	IP and Mag survey over three roughly N-S lines with an aggregate length of 18.1 km. Several other apparently planar IP anomalies are also present. While the data collected from this survey is not sufficient to demonstrate the existence of any mineralized systems on the property, it does outline several features of interest which may be worthy of follow-up work.	GM 67644
2014		A heliborne VTEM geophysical survey has been completed over the Lac Fleuri, Nantel, Grasset Gap, Grasset North, Jeremie-Fenelon and Nickel Test survey areas. Based on the geophysical results obtained, a number of TEM anomalous zones are identified across the properties.	GM 68603
2015		Geochemical MMI survey (128 samples), which focussed on Detour East, Harri and Jérémie properties. Anomaly 2014-H-02 is observed on the western line of the Harri Property. It shows 4 to 6 samples anomalous in Cu, Pd, Ag, and to some extent Au over a distance of 250 m.	GM 68959
2018		2 drill holes (610.6 m) on the Harri Property. These drill holes tested for gold and base metal mineralization, testing geologic and geophysical targets in proximity to the SLDZ. Drill hole HAR-18-02 intersected 1.13 m of 1.5% Zn.	GM 70895

6.6 Detour East Block

The significant historical exploration work on the Detour East claim block consists of more than 218 drill holes for at least 50,000 m of drilling. Other historical work includes several airborne and ground-based geophysical surveys (EM, IP, Mag, gravity) and a lesser amount of surface work that includes mapping, prospecting and soil sampling. The bulk of this historical work focused on two regionally prominent areas of high EM conductivity referred to herein as the Southern EM and Northern EM trends. These trends are located

along boundaries between lithological domains. A summary of the relevant work is presented in Table 6.6.

Table 6.6 - Historical work on the Detour-East Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959	Kesagami Syndicate	3 drill holes totalling 277 m along the Northern EM trend. Most of the drill holes hit short intervals of massive to semi-massive pyrite and/or pyrrhotite with, or without, minor to trace Cu and Zn (Groupe Kesagami-Fox showing).	GM 18183
1959- 61	Paudash Lake Uranium Mines Ltd	EM, Mag and gravity surveys; 11 drill holes drilled on the Southern EM. Intersection of several sulphide-rich layers with mostly low base and precious metal values, with the exception of a 1.0 m intercept running 8.2% Zn and 1.45% Cu (Paudash showing).	GM 11354
1969	Pennaroya Canada Ltd	4 drill holes totalling 664 m on the Southern EM targeting the Paudash showing. Intersection of 1.8 m of massive pyrite + chalcopyrite + marcasite in drill hole 887-23.	GM 24929
1971	Canadian Nickel Co. Ltd	1 drill hole for 162 m on the Southern EM. Intersection of a weakly mineralized schist.	GM 27181
1975-76	Noranda Exploration Co. Ltd	Mapping; 2 drill holes totalling 261 m on the Northern EM. Drill holes 76-2 returned three 1-2 m wide zones with trace Au and Cu + Zn and M-77-1 intersected several 0.5-1.0 m wide layers of semi-massive sulphide	GM 31660, GM 32507, GM 35999
1979-80		3 drill holes totalling 294 m on the Southern EM. Best assay was 0.07 g/t Au over 60 cm from a chloritized intermediate volcanic in drill hole D-100-1 just west of the yet-to-be-discovered Lynx Zone. Drill hole D-105-2 intersected 18.8 m of iron formation.	GM 36209, GM 37078
1975	Selco Mining Corp. Ltd	Airborne and ground Mag surveys on the Northern EM followed by 1 drill hole of 103 m that intersected a conductive unit of pyrite-bearing argillite.	GM 31965
1980		Geophysical survey and 3 drill holes totalling 205 m on the Manthet Domain. Drilling intersected 9.2 m of massive to semi-massive sulphide in drill hole D-107-1.	GM 37361, GM 36766
1980		Regional air photo interpretation.	GM 38110
1981-82	Westmin Resources Ltd	Mapping, soil sampling and ground-based geophysics at the Southern EM followed up on 5 drill holes totalling 891 m. Best results comprised 4.0 m of massive to semi-massive sulphide grading up to 18% Zn over 0.6 m in drill hole LB-81-1, which was collared near the Paudash showing.	GM 38109, GM 39941, GM 38976
1982		1 drill hole for 206 m on the Northern EM.	GM 40106
1988-93		Mapping; soil sampling; LF-EM survey and drilling of 8 drill holes totalling 1,710 m on the Southern EM. Most of the drill holes tested geophysical anomalies (IP, EM, Mag) that, after drilling, appeared to be mostly explained by graphitic sedimentary units. Follow-up	GM 47836, GM 50997, GM 52046

Year	Owner	Description of work / Highlights / Significant results	Ref.
		drilling on the Paudash showing returned 0.24% Zn and 0.034% Cu over 4.57 m.	
1981	Canadian Merrill Ltd	Ground-based EM survey followed by 2 drill holes totalling 248 m on the Southern EM. FOP-1 returned a 63 m interval with 5-20% pyrrhotite and/or pyrite and assays of up to 1.16% Zn over 1.6 m (the FOP-1 showing).	GM 37394
1982-86	Queenston Gold Mines Ltd	Geophysical surveys and 3 drill holes totalling 337 m at the Manthet Domain. Highlights included 14 m of sulphide and graphitic argillite near the end of DL-85-1 and an assay of 0.135 g/t Au over 1.0 m in drill hole 86-31.	GM 42183
1982	Anaconda Canada Exploration Ltd	Remote sensing surveys over the Manthet Domain.	GM 39226
1984		Compilation, geological mapping of the Matagami area.	GM 41656, GM 41657
1984-87	Ingamar Explorations Ltd JVs	Compilation, geological mapping of the Southern EM.	GM 44282 GM 44283 GM 44284
1987	Mineta Resources Ltd	Airborne geophysical surveys with 114 km of ground-based Mag, 24 km of HLEM and 14.5 km of IP survey on the Southern EM.	GM 45304; GM 46083
1986	Exploration Essor Inc.	2 drill holes totalling 314 m on the Southern EM trend. KA-86-2 intersected significant stretches of pyrite bearing graphitic argillite and pyrite mineralization hosted within volcanic rocks but returned no significant assays.	GM 44258
1986	Rambo Exploration Inc.	9 drill holes led to the discovery of the Rambo Zone. Assay results included 6.3 g/t Au over 2.7 m (TU-86-1), 6.51 g/t over 0.7 m (TU-86-2), 7.6 g/t over 0.6 m (TU- 86-6), 3.4 g/t over 1.2 m (TU-86-3), 2.45 g/t Au over 1.5 m (TU-86-8) and 4.35 g/t over 0.3 m (TU-86-9).	GM 45607
1987		7 drill holes. The program was unsuccessful in extending the "Rambo Zone" along strike or at depth.	GM 45607
1988	Rambo Exploration Inc.; Coleraine Mining Resources Inc.	14 drill holes on the Rambo Zone. No significant assay results.	GM 48553
1994	Coleraine Mining Resources Inc.	Drilling of a 402-m drill hole on the Rambo Zone. No significant assay results.	GM 52701
1988	Exploration Lynx Canada Ltée	Ground Mag, EM and IP surveys followed by 8 drill holes totalling 1,828 m led to the discovery of the Lynx Zone. MS-87-06 intersected a vein with visible gold that returned 3.44 g/t Au over 1.00 m, and MS-87-07 returned 11.96 g/t Au over 1.35 m.	GM 46540

Year	Owner	Description of work / Highlights / Significant results	Ref.
1987-88	Exploration Minière Golden Triangle Inc.; Explorations Noramco Inc.	9 drill holes totalling 2241 m on the Southern EM. drill hole 001 intersected 19 m of pyrite-bearing graphitic argillite that assayed 0.1 g/t Au over 18.7 m with a sub-interval grading 2.2 g/t over 1.0 m. Drill holes H-1428-017, -23, -25 and -31 intersected at least one 1.0-1.5 m interval grading 0.3-0.5 g/t Au (Rivière Théo–Rivière Turgeon showing).	GM 45982, GM 47623
	Glen Auden Resources Ltd; Golden Dragon Resources Ltd; Royex Gold Mining Corp.	7 drill holes totalling 1,292 m west of the Rambo discovery, hitting mostly barren sedimentary rocks with maximum grades of 150 ppb Au over 0.45 m.	GM 47225
1988		5 drill holes totalling 1,159 m on the Northern EM trend returned weakly anomalous base metal values that include: 0.25% Zn over 1.46 m (GD-88-01), 0.28% Zn over 1.37 m (GD-88-02) and 0.105% Cu over 0.91 m (GD-88-01).	GM 47226
		37 RC drill holes totalling 1,118 m on the Matagami area, with 14 of the RC drill holes returning significant gold grain counts (>5 grains) in basal till and 8 RC drill holes returning anomalous gold values (15-120 ppb Au) in bedrock (the RC Trend).	GM 47447
1989	Glen Auden Resources Ltd	3 drill holes totalling 811 m. No significant gold assay results	GM 48757
1991	Total Energold Corp.	Geophysical surveys and 4 drill holes totalling 812 m on the Southern EM. Drill hole LA-3, collared 1 km west of the Rivière Théo-Turgeon showing, intercepted 24.1 g/t Au over 2.48 m (the LA-3 showing).	GM 50596
1993	Cyprus Canada Inc.	6 drill holes totalling 1,476 m across the claim block. Drilling on the Lynx Zone yielded a composite of 4.81 g/t Au over 13.34 m in drill hole LX-93-12 and 3.32 g/t Au over 5.65 m in drill hole LX-93-15. Follow-up drilling on the LA-3 showing results yielded few results of significance.	GM 52083; GM 51785; GM 52084
1994		6 drill holes totalling 2006 m to test the down-dip and strike extensions of the Lynx Prospect were unsuccessful in doing so.	GM 52617
1997		2 drill holes totalling 313 m at the Manthet Domain. These drill holes intersected a set of quartz + calcite + pyrrhotite + pyrite veins that were interpreted to be linked to an IP anomaly but carried no significant gold or base metal values.	GM 55499
1995	Ressources Minières Radisson Inc.	Geophysical surveys and 5 drill holes totalling 2,178 m on the Lynx Zone. Drill hole MS-95-29 returned assays of 1.71 g/t Au over 0.34 m and 1.30 g/t Au over 0.38 (the Lac Geoffrion East showing). Drill hole LG-95-01, drilled on the Lac Gignac Deformation Zone ("LGDZ"), returned an assay of 0.73 g/t Au over 1.18 m.	GM 53010
1996		Geophysical surveys and drilling of 21 drill holes totalling 5,478 m on the Lynx Zone and LGDZ. No notable precious or base metal values were intersected.	GM 55564

Year	Owner	Description of work / Highlights / Significant results	Ref.
1997-98		Geophysical surveys and drilling of 12 drill holes totalling 2,887 m on the LGDZ. Drill hole LG98-28 returned assays values of 1.92 g/t Au over 0.33 m, and drill hole LG98-17 returned weakly anomalous gold (-0.05 g/t) over 149 m and 0.4% Zn over 3 m (the Lac Gignac West and LG98-17 showings).	GM 56041
2001		8 drill holes totalling 2,878 m on the LGDZ returned 1.93 g/t Au over 1.0 m from the Lac Gignac West showing.	GM 59037
1996	Billiton Metals Canada Inc.	3 drill holes totalling 597 m on the Northern EM. Best assays: 0.36 g/t Au over 1.6 m in B01-01 and 0.036% Cu over 6.4 m in B01-06. Follow-up downhole EM surveys had limited success due to the intersection of pyrite- and/or graphite-rich conductors.	GM 54144, GM 55411
1998	Gowest Amalgamated Resources Ltd	3 drill holes totalling 758 m on the Northern EM. These drill holes targeted a chargeability anomaly and returned broad intervals of disseminated pyrite mineralization with only weakly anomalous gold values.	GM 55878
1998	SOQUEM	5 drill holes totalling 1,225 m on the Southern EM. Intersection of 1.17 g/t Au over 0.75 m in drill hole 1197-98-01 and 1.24 g/t Au over 1.0 m in drill hole 1197-98-2.	GM 56103
2008	Ressources d'Arianne Inc.	Airborne VTEM, mobile metal ion sampling and drilling of 2 drill holes totalling 318 m on the Southern EM. Neither drill hole returned grades exceeding 12 ppb Au.	GM 64141
2011		Geological mapping on the Southern EM and IP/Resistivity surveying and 7 drill holes on the eastward trend of the SLDZ. No significant results.	GM 66026
2011-12		Soil sampling (800 samples) and drilling of 8 drill holes totalling 2,654 m on the Northern EM and LGDZ. Drilling highlights including assays of 3.06 g/t Au over 0.60 m in drill hole DTE-12-08 as well as 1.725 g/t Au over 1.0 m in DTE-12-12.	GM 66719, GM 66348, GM 67370
2015		1 drill holes (DTE-15-16) for 279.4 m on the Eastern part of the claim block (La Peltrie Township). The drill hole returned no significant assay result.	GM 69163
2016	Balmoral Resources Ltd	6 drill holes totalling 1,559 m mainly focused on confirming and expanding the Lynx and Rambo gold zones. The program extended the Lynx Zone down plunge to the west intersecting two zones of gold mineralization in DTE-16-18 (1.27 g/t over 0.5 m and 5.69 g/t over 1.58 m). Two drill holes tested for extensions of the Rambo Zone failed to intersect any significant gold mineralization. The exploration drilling along the RC trend discovered in 1988, northwest of the Lynx Zone, failed to identify a potential source that would explain the results of previous RC drilling.	GM 70057
2017		15 drill holes totalling 4,695 m tested for gold and base metal mineralization. Drill hole DTE-17-23 returned three individual intervals with significant results (>1 g/t Au): 1.10 g/t Au over 4.00 m, 1.62 g/t Au over	GM 70591

Year	Owner	Description of work / Highlights / Significant results	Ref.
		0.92 m and 1.28 g/t Au over 0.54 m. Drill hole DTE 17-33 returned 815 ppm Ni over 6.53 m. Drill hole DTE-17-34 and drill hole DTE-17-35 tested a single conductor target on the margin of a magnetic high. Drill hole DTE-17-34 intersected 699 ppm Ni over 88.76 m, and drill hole DTE-17-35 intersected 745 ppm Ni and 662 ppm Ni over 10.93 m and 72.66 m.	
2018		6 drill holes totalling 1,889 m tested for gold and base metal mineralization on the DTE area. Drill hole DTE-18-42A returned two individual intervals with significant results (>1 g/t Au): 0.25 g/t Au over 7.92 m and 1.60 g/t Au over 7.00 m.	GM 70894

6.7 Casault Block

The relevant historical work on the Casault claim block consists of geophysical surveys and drilling. A summary is presented in Table 6.7.

Table 6.7 – Historical work on the Casault Block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959	Kesagami Syndicate	2 Drill holes (60-1 and 4-1). Both drill holes intersected several intervals with 10 to 50% pyrite. Drill hole 4-1 intersected an iron formation. No assay results available.	GM 18183
1075	Selco Mining	Mag and EM survey followed by an IP survey, mapping, and drilling of several drill holes to test some anomalies.	GM 31185, GM 31186
1975		Drill hole D-52-1. Intersection of a quartz sericite schist with an interval of 5-10% disseminated pyrite over 42 m. No assay results available.	GM 31188
1980-1981	SDBJ (Société de Développement de la Baie-James)	VLF and magnetometric surveys, sampling, and mapping. Several VLF anomalies were identified.	GM 37488; GM 8959
1982	Queenston Mining	Geophysical and geological data compilation. 2 zones of interest identified: a highly magnetic zone interpreted as an iron formation and another corresponding to an unidentified conductor.	GM 39929
1983		Field exploration and an airborne geophysical survey. Various features were identified, including EM conductors and geological contacts.	GM 39931
1984-1985		Mag and EM survey. 3 conductors identified.	GM 42169
1986		3 drill holes (DL-85-8, DL-85-9 et DL-85-13). Drill hole DL-85-13 intersected 0,57 g/t Au over 1.0 m in mafic volcanics.	GM 43413; GM 44072

Year	Owner	Description of work / Highlights / Significant results	Ref.
1986-1988		13 drill holes (DL-86-24 to -30 and DL-87-48 to -53). Best results: 0.73 g/t Au over 3 m in drill hole DL-86-24; 0.89 g/t Au over 1.2 m, 0.41 g/t Au over 3.1 m and 0.25 g/t Au over 9.2 m in drill hole DL-86-25; 1.85 g/t Au over 9.0 m in drill hole DL-87-50; 1,955 g/t Au over 1.0 m in drill hole DL-87-51.	GM 44767; GM 46412
1987		Mag and EM survey. Many EM conductors detected and interpreted as coming from the bedrock.	GM 46476
1995	Placer Dome	An airborne geophysical survey and an IP survey were performed. Many typical sulphide response anomalies were detected,	GM 54177; GM 54178
1995	Billiton Metals Canada Inc.	4 drill holes. Best results: 0.29% Zn over 4.5 m in drill hole B01-02; 0.14% Zn over 3.65 m in drill hole B01-04; and 0.26% Zn over 2.6 m in drill hole B01-05.	GM 54144
2008	Ressources D'Arianne Inc.	Structural study based on LANDSAT ETM+ images and ortho-rectified aerial photographs.	GM 63647
	Midland Exploration Inc.	Geophysical surveys performed: VTEM and Mag.	GM 66346; GM 66347
2010-2011		3 drill holes totalling 669 m. Some intervals of pyrite, pyrrhotite and chalcopyrite were intercepted (trace to up to 5% exceptionally). Best result was 0.85 g/t Au over 1.5 m	GM 66345
2012	Midland Exploration Inc.; Osisko Mining Corporation	20 drill holes totalling 4,562 m. Discovery of a new zone with CAS-12-07 returning 10.4 g/t Au over 1.45 m and CAS-12-010 (collared 2 km to the east) returning 1.86 g/t Au over 1.50 m. Discovery of a new zone with drill hole CAS-12-07 returning 10.4 g/t Au over 1.45 m and drill hole CAS-12-010 (collared 2 km to the east) returning 1.86 g/t Au over 1.50 m. CAS-12-020 and CAS-12-022, drilled in the northern part of the claim block, intersected a major fault zone locally anomalous in gold, now interpreted as the SLDZ. Drill hole CAS-12-020 and drill hole CAS-12-022 completed in the northern part of the claim block intersected a major fault zone locally anomalous in gold, interpreted as the SLDZ. Drill hole CAS-12-020 returned 0.22 g/t Au over 3.0 m and drill hole CAS-12-022 returned 0.79 g/t Au over 1.5 m.	GM 66854
		VTEM survey.	GM 67664; GM 67665
2013		Magnetic and IP surveys.	GM 67617; GM 67738
2010		14 drill holes totalling 2,992.8 m. Only weakly anomalous gold values were intersected.	GM 67737
2014	Midland Exploration Inc.	Mag, IP and TDEM surveys.	GM 68447; GM 68909
2015-2016		Mag, resistivity/IP and OreVision surveys.	GM 69063; GM 69064
		High-resolution Mag-gradiometry survey. 2 magnetic	GM 69229

Year	Owner	Description of work / Highlights / Significant results	Ref.
		domains identified.	
		15 drill holes totalling 3,332 m (CAS-15-038 to -52). Drill hole CAS-15-044 intersected several continuous anomalous gold intervals (> 100 ppb Au) over 100 m, with a best grade of 0.47 g/t Au over 1.0 m. Gold values are associated with strong silica, sericite and hematite alteration, as well as quartz-carbonate stockworks and QFPs. CAS-15-041 and -042 intersected 1.19 g/t Au over 2.5 m and 0.331 g/t Au over 6.55 m, respectively.	GM 68987; GM 69778
		Mag and OreVision surveys.	GM 69554
	Midland Exploration Inc.; SOQUEM Inc.	34 drill holes totalling 10,690 m (CAS-15-053 to -075 and CAS-16-078 to -083). CAS-15-053 confirmed the continuity of the gold-bearing veins discovered, intersecting 6.89 g/t Au over 1.10 m and 5.41 g/t Au over 1.00 m. CAS-15-068 (2.90 g/t Au over 0.4 m), CAS-15-069 (0.69 g/t Au over 0.55m) and CAS-15-070 (3.34 g/t Au over 0.40 m and 0.87 g/t Au over 2.85 m) confirmed the extension of those gold-bearing veins to the NW. CAS-15-071 intersected 0.31 g/t Au over 12.3 m and CAS-16-080 intersected 0.29 g/t Au over 1.00 m. CAS-16-082 intersected anomalous gold values with 0.29 g/t Au over 1.00 m associated with a QFP mineralized with pyrite and pyrrhotite.	GM 70013; GM 69701
		OreVision survey: 5 low intensity polarizable sources interpreted, all oriented NW. Several appear to be, at least in part, due to the uplift of the bedrock.	GM 69779
		Mag and OreVision surveys: 3 anomalies interpreted.	GM 70339; GM 70674
2017		13 drill holes totalling 3,889 m (CAS-17-084 to -096). Discovery of a new zone, "Zone 450", with drill hole CAS-17-086 returning 3.1 g/t Au over 1.40 m. The next 5 drill holess tested the extensions of the zone, intersecting mineralization. Best results: CAS-17-096 returning 1.38 g/t Au over 26.20 m; CAS-17-095 returning 1.30 g/t Au over 23.50 m and CAS-17-094 returning 1.88 g/t Au over 7.20 m. Zone 450 is characterized by breccia and banded albite, ankerite, hematite, sericite, chlorite, quartz and calcite. This new auriferous sector was named "Vortex" and comprised zones 475,450, 435 and 425.	GM 71352

Year	Owner	Description of work / Highlights / Significant results	Ref.
2018		25 drill holes totalling 8770.5 m (CAS-18-097 to -122). Results showed the Vortex gold system comprises 6 parallel mineralized zones (550, 525, 475, 450, 435 and 425) contained in a corridor 2 km long and 50-150 m wide. Zone 450 (the most important in terms of width and gold values) had been identified between a depth of 75 to 250 m in all drill holes between CAS-18-116 and CAS-18-117. Those 2 drill holes marked the western and eastern limits of the corridor. Zones 550 and 525 are new zones discovered in 2018: Zone 550 (associated with quartz-calcite injections and some pyrite) returned 0.385 g/t Au over 3.80 m in CAS-18-098, and Zone 525 returned 0.1 g/t Au over 6.50 m at a contact between mafic volcanics and a gabbro unit.	GM 71351
		OreVision survey: identification of 9 weakly polarizable lineaments, globally oriented E-W.	GM 70908
2019	Midland Exploration Inc.	IP survey: Delineation of 4 polarizable IP axes highlighting moderate to strong chargeability anomalies, partially correlated with resistivity lows. The 2D inversion models suggest they are indicative of quite broad or closely spaced bodies/structures with steep dips. They could be the potential markers of disseminated to sulphide-rich mineralization (±graphite), hosted along faults and/or altered and sheared bands of rock along geological contacts.	GM 71473

6.8 Nantel Block

The only relevant historical work completed on the Nantel Block is a heliborne VTEM geophysical survey, flown in 2014 over the Nantel claims and the Lac Fleuri, Grasset Gap, Grasset North, Jeremie-Fenelon and Nickel Test areas (GM 68603) with no formal interpretation reported by Balmoral.

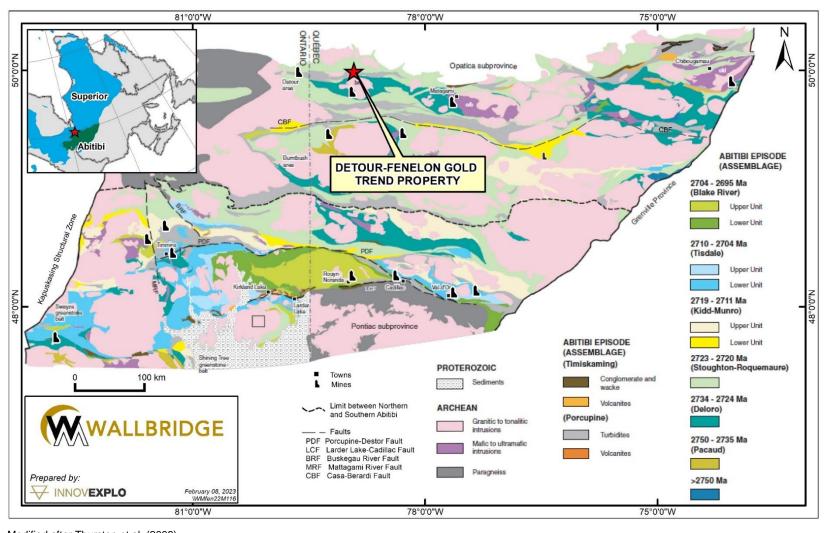
7. GEOLOGICAL SETTING AND MINERALIZATION

The information presented in this item is based on Faure et al. (2020), Myers and Wagner (2020), Richard and Turcotte (2016), Perk (2015), and Voordow and Jutras (2018). Other references are duly indicated where applicable.

7.1 Regional Geology

The Property is located in the northwestern Archean Abitibi Subprovince of the southern Superior Province in the Canadian Shield (Figure 7.1).

The Abitibi Subprovince is a greenstone belt composed of east-trending synclines of largely volcanic rocks and intervening domes cored by synvolcanic and/or syntectonic plutonic rocks (gabbro-diorite, tonalite, and granite in composition) alternating with east-trending bands of turbiditic wackes. Most volcanic and sedimentary strata dip vertically and are generally separated by abrupt, east-trending trans-crustal faults with variable dips. Some of these faults, such as the Cadillac–Larder Lake and Porcupine-Destor faults, display evidence of overprinting deformation events, including early thrusting, later strike-slip and extension events. Two ages of unconformable successor basins, producing widely distributed Porcupine-style basins of fine-grained clastic rocks, followed by Timiskaming-style basins of coarser clastic and minor volcanic rocks which are largely proximal to major strike-slip faults, such as the Porcupine-Destor, Cadillac–Larder Lake, and similar faults in the northern Abitibi Greenstone Belt. In addition, the Abitibi Greenstone Belt is cut by numerous late-tectonic plutons from syenite and gabbro to granite, with lesser dykes of lamprophyre and carbonatite.


The Abitibi Greenstone Belt is subdivided into seven volcanic stratigraphic episodes based on groupings of numerous U-Pb zircon ages. These episodes denote a geochronologically constrained stratigraphy (from oldest to youngest):

- Pre-2750 Ma volcanic episode 1
- Pacaud Assemblage (2750-2735 Ma)
- Deloro Assemblage (2734-2724 Ma)
- Stoughton-Roguemaure Assemblage (2723-2720 Ma)
- Kidd-Munro Assemblage (2719-2711 Ma)
- Tisdale Assemblage (2710-2704 Ma)
- Blake River Assemblage (2704-2695 Ma)

The U-Pb zircon ages and recent mapping show similarity in the timing of volcanic episodes and ages of plutonic activity between the northern and southern Abitibi Greenstone Belt, as indicated in Figure 7.1. Therefore, this geographic limit has only stratigraphic and structural significance.

The Abitibi Subprovince is bounded to the south by the Cadillac–Larder Lake Fault Zone, a major crustal structure separating the Abitibi and Pontiac subprovinces (Figure 7.1).

Modified after Thurston et al. (2008)

Figure 7.1 – Stratigraphic map of the Abitibi Greenstone Belt

The Abitibi Subprovince is bound to the north by the Opatica Subprovince (Figure 7.1), a complex plutonic-gneiss belt formed between 2800 and 2702 Ma.

The metamorphic grade in the greenstone belt displays sub-greenschist to greenschist facies, except around plutons or approaching the Opatica and Pontiac subprovinces and the Grenville Province, where amphibolite grade prevails.

7.2 Local Geology

The Property is located in the Northern Volcanic Zone or Harricana-Turgeon ("HT") volcano-sedimentary belt of the Abitibi Subprovince, near the boundary between the Abitibi and Opatica subprovinces (Figure 7.2). The HT belt overlaps the Ontario-Quebec boundary. In Ontario, the HT belt is formed by the Deloro, Porcupine and Stoughton-Roquemare assemblages of Thurston et al. (2008). In Quebec, these assemblages are recognized as the Manthet Group, the Rivière Turgeon Formation and the Brouillan-Fenelon Group, each forming a distinct geological domain. The boundaries between the geological domains are delineated by high-strain zones that include the Lower Detour ("LDDZ") and Sunday Lake ("SLDZ") deformation zones. The SLDZ separates the Manthet and Matagami domains, whereas the LDDZ separates the Matagami and Brouillan-Fenelon domains.

The Manthet Group, to the north of the SLDZ, has been interpreted as the equivalent of the 2730-2724 Ma Deloro assemblage. It is characterized by abundant iron-rich tholeiitic basalts and coeval gabbroic sills and dykes with minor intercalated graphitic argillites, as well as mafic and felsic volcaniclastic rocks. Ultramafic flows and intrusions at the base of the volcanic sequence are also known near the Detour gold mine and between the Fenelon claim block and the Opatica Subprovince. The volcanic sequence is coeval to the volcanic units of the Selbaie and Matagami base metal mining camps. The degree of metamorphism and deformation within the Manthet domain increases gradually northward toward the Opatica gneisses.

The Rivière Turgeon Formation is bound by the SLDZ in the north and the LDDZ in the south, bridging the Manthet and Brouillan-Fenelon groups, respectively. Rock types consist mostly of wackes and argillites, as well as tuffaceous units and iron formations. These sediments are interpreted to be deposited in a successor basin unconformably overlying the volcanic rocks. They are included in the Matagami Group and are considered equivalent to the Porcupine-type sediments of the southern Abitibi. The iron formations show strong lateral continuity along east-west trends. Other rock types include numerous mafic to ultramafic sill-like intrusions and at least one larger composite maficultramafic intrusion. The contact between the Rivière Turgeon Formation and the Manthet Group is delineated by the SLDZ, which dips 70°-80° to the south-southwest.

The volcanic-dominated Brouillan-Fenelon Group lies to the south of the LDDZ and comprises mostly mafic volcanic rocks that are interpreted to be the equivalent of the 2723-2720 Ma Stoughton-Roquemaure Assemblage of Thurston et al. (2008). This geological domain contains a greater volume of felsic volcanic and intrusive rocks than the Manthet Group. It hosts the former-producing Selbaie volcanogenic massive sulphide ("VMS") deposit.

The Property also encloses the southeastern edge of the Jérémie Pluton, the largest multiphase intermediate to felsic intrusion of the Harricana-Turgeon volcanic segment.

From Wallbridge (February 07, 2023): Detour Lake Mine and Zone 58N mineral resources and reserves are from Agnico second quarter results (Agnico, 2022) and from Leite (2020). The information on these adjacent properties obtained from the public domain has not been verified by the QPs. The claims owned by Archer Exploration Corp (with a 19.9% Wallbridge ownership) are not covered by this technical report. Nearby mineralized occurrences are not necessarily indicative that the Property hosts similar types of mineralization.

Figure 7.2 – Geology of the Harricana-Turgeon Belt, northwestern Abitibi Subprovince

7.3 Geology of the Property

Due to the thick glacial cover, the geology of the Property is mainly known through interpretation from drill core or mapping of the open pit and underground development on the Fenelon claim block, and the interpretation of geophysical survey results. The claim blocks that saw the bulk of the drilling on the Property are Fenelon and Martiniere.

7.3.1 Fenelon Block

The Fenelon Block is almost entirely covered by overburden, with depths ranging from 5 m to over 117 m (20 to 35 m on average). The block covers approximately 14 km of the SLDZ (Figure 7.3).

North of the SLDZ, the Fenelon Block is underlain by NW-SE trending sedimentary rocks and lesser mafic to ultramafic volcanic rocks. These rocks have been intruded by intermediate to mafic/ultramafic sills and dykes. To the northwest, the sequence is intruded by the Jérémie Pluton, an ovoid-shaped, composite felsic to intermediate intrusive body. Diorite intrusions, such as the Jérémie Diorite, extend into the Fenelon deposit area and are interpreted to be earlier phases of the Jérémie Pluton. Two distinct phases of the Jeremie Diorite have been identified to date, both of which fall within a diorite composition, but one being more mafic. One of these phases has been recently dated at 2697.11 ± 0.96 Ma (Carter, 2020) and is interpreted to be syn-tectonic. Structural zones that developed within or along the margins of these intrusive rocks have served as common focal points for gold accumulation (e.g., the Fenelon deposit).

The area of the Fenelon deposit is located within 2 km north of the SLDZ and is also covered with approximately 20-30 m of glacial overburden. The area is mainly underlain by a turbiditic sedimentary basin and the eastern margin of the Jérémie Pluton (Figure 7.3).

The sedimentary sequence consists of greywacke, siltstone, mudstone, as well as minor conglomerate (interpreted to have been deposited from turbidite flows) transitioning to argillite and graphitic argillite. Coarse-grained sedimentary rocks (greywacke, siltstone) are most abundant in the southwest, whereas finer-grained sedimentary rocks (argillite, graphitic argillite, and mudstone) dominate in the northeast. The Tabasco and Cayenne zones are hosted in this sedimentary package, mainly constrained to the finer sediments. Similarly, the Contact Zone is also mainly hosted in the sediments but formed along the margin of the Jérémie Diorite.

The Jérémie Pluton is a mesocratic medium- to coarse-grained intrusion. The pluton is not magnetic and varies in composition from diorite to granodiorite. Mafic xenoliths are often observed. The pluton contact with the sediments is not sharp; it represents a transitional zone affected by ductile deformation. The Area 51 vein network is largely hosted in the Jérémie Diorite.

The Main Gabbro is the largest intrusive body in area of the Fenelon deposit after the Jérémie Pluton. It is a multiphase ultramafic to intermediate sill complex, which is interpreted as synvolcanic differentiated sills injected into a sedimentary sequence, tilted by regional deformation; dipping steeply to the south. Ultramafic rocks are concentrated in the northeastern side of the dyke swarm, whereas intermediate to felsic, mediumgrained and equigranular massive granodiorite occurs along the southwestern margin. The Main Gabbro is the host of the Gabbro Zones, the only historically known (pre-

Wallbridge) gold-bearing zones of the Fenelon deposit: Fresno, Chipotle, Anaheim, Naga Viper, Habanero and Serrano.

The sedimentary units are cut by numerous metre-scale porphyry dykes. Almost all the logged occurrences of the dykes are found cutting the sedimentary rocks adjacent to the Main Gabbro and Jérémie Diorite, with only a few inconclusive instances near the outer contact of the Main Gabbro and Jérémie diorite where the dykes maybe seen as cutting these lithologies. The dykes are characterised by mm to cm sized plagioclase and/or quartz crystals in a fine-grained, medium to dark gray matrix. The porphyry dykes form what appear to be discontinuous bodies that are mainly steeply dipping to the southwest and south, subparallel to the mineralized zones of the Tabasco/Cayenne, Gabbro and Area 51 zones. The age relationship of the porphyry dykes, the Main Gabbro and the Jérémie Diorite is unclear, each unit are currently being dated by researchers.

To the south of the Main Gabbro is a ubiquitous mafic to ultramafic dyke swarm consisting of dozens of subparallel dykes ranging from centimetres to decametres thick. These dykes are oriented oblique to the Main Gabbro, with an average dip of about 45° to the south. The Main Gabbro and mafic dyke swarm intrusive suite cross-cuts the Jérémie Diorite and is interpreted to be younger than the pluton. These mafic dykes also cut the porphyritic intrusions in the Gabbro Zones. Most mafic dykes on the Property are foliated or folded, and contacts are sheared with frequent quartz-carbonate veins. Intermediate to felsic porphyries are more competent and have sharper contacts in the sediments. To date, no post-mineralization dykes have been observed, and gold zones appear to cut across all lithologies.

Alluvial-fluvial Timiskaming-type sedimentary rocks occur within the SLDZ and consists of interbedded pebble-cobble conglomerate and greywacke that were deposited uncomformably on older sedimentary units.

South of the SLDZ, the stratigraphy is dominated by E-W trending sedimentary rocks of the Rivière Turgeon Formation. Little geological information is available on this sequence due to the low level of exploration activity in this area.

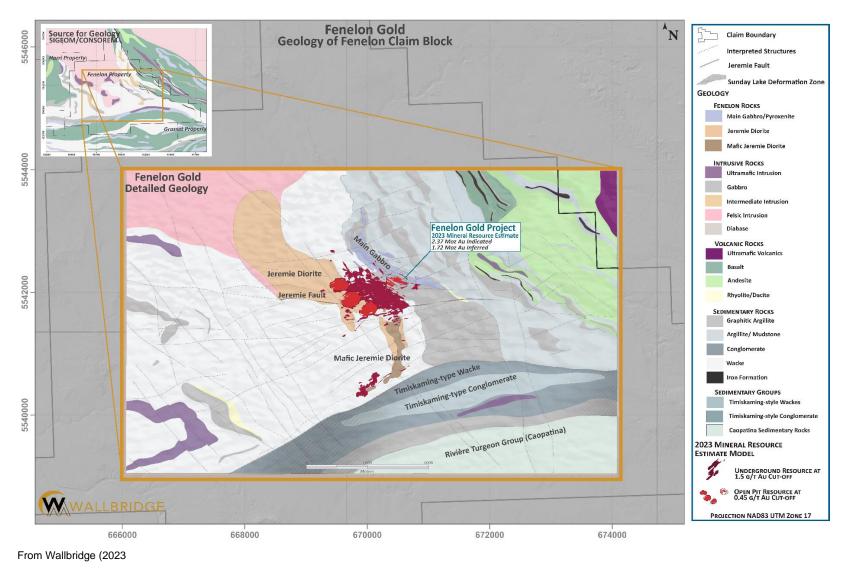
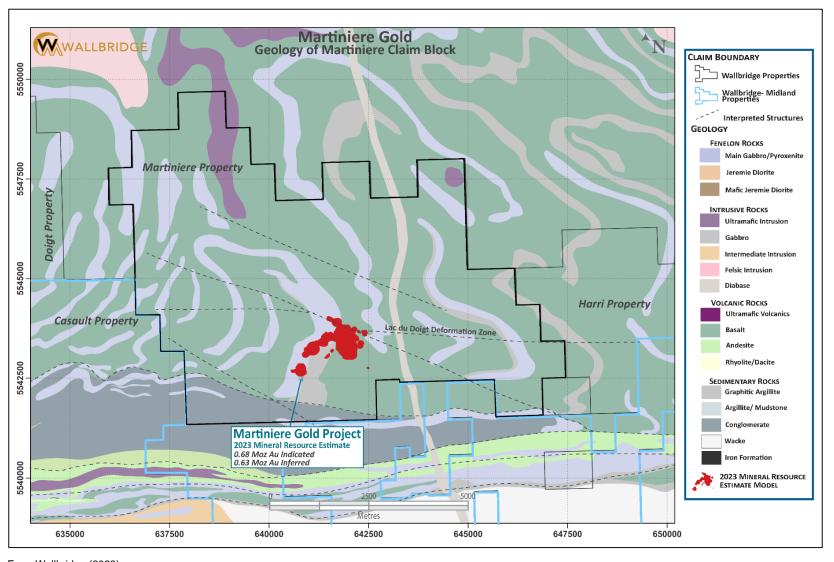


Figure 7.3 – Geology of the Fenelon Block

7.3.2 Martiniere Block


The Martiniere Block is mostly flat and covered by glacial overburden that averages 22.5 m thick. Only a few outcrops are present along the Martigny River and on higher ground in the northwest part of the claim block, consisting mostly of mafic volcanic and/or intrusive rocks. The geophysical interpretation (by the MRNF) of the boundaries between lithological units suggests that most of the Property is underlain by mafic volcanics and gabbro of the Manthet Group (Figure 7.4), with lesser sedimentary rocks, felsic tuff and younger diabase dykes. Granitoid gneiss of the Opatica Subprovince underlies the northwest corner of the claim block.

Recent interpretations by the issuer, also based on work by the MERN and CONSOREM, indicate that the volcano-sedimentary package is openly folded in the deposit area. Rock types consist mostly of mafic volcanics and gabbroic sills, with minor felsic intrusions, graphitic argillite, and massive sulphides. Sulphide minerals consist almost entirely of pyrite. A younger generation of quartz porphyry intrusions locally forms subvertical dykes that play an important role in localizing gold mineralization.

The most prominent structures in the Martiniere Block area are E-W striking, possibly crustal-scale, deformation corridors like the SLDZ, which passes through the southern part of the claim block, and the smaller and more recently discovered Lac du Doigt Deformation Zone ("DDZ"), WNW-striking, cutting through the centre of the Property. Another important structure on the Property is the NNW-trending Bug Lake Fault Zone ("BLFZ") that hosts the Bug Lake deposit. The BLFZ dips approximately 60-80° to the east and has a planar to sigmoidal form in cross-section, showing steeply dipping ramps (or "steeps") and shallower flats. The BLFZ hosts the Bug Lake quartz porphyry and is characterized by a strong deformation fabric with silica-sericite-carbonate alteration, increased disseminated pyrite content and fault breccia texture. Alteration is associated with a set of diffuse quartz-carbonate ± pyrite veins that locally exhibit coliform texture. Movement along the BLFZ appears to have included: (1) ductile shearing as marked by increased penetrative deformation fabric in volcano-sedimentary rocks, (2) brittle shearing represented by re-healed breccia (typically with calcite in-fill), and (3) brittle faulting marked by broken ground, with clay coatings on fracture surfaces and rare fault gouge.

The Martiniere West and Central zones are hosted within the Martiniere West Trend, a more diffuse, stratiform structure marked by a weak penetrative deformation fabric, with around 1-5% disseminated pyrite and localized silicification. The Martiniere West Trend is developed within a gabbroic sill and oriented at an angle of around 60° to the BLFZ.

From Wallbridge (2023)

Figure 7.4 – Geology of the Martiniere Block

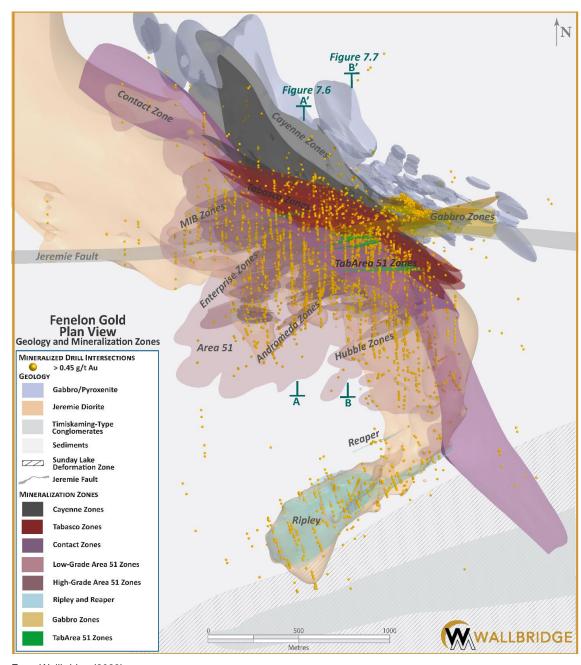
7.4 Mineralization

7.4.1 Fenelon Block

7.4.1.1 Gold

The Fenelon deposit comprises four gold-bearing domains: the Gabbro Zones in the gabbro sill complex, the Tabasco and Cayenne and Contact zones in sedimentary rocks, the Area 51 Zone in the Jérémie Diorite and adjacent sedimentary rocks, and the Ripley-Reaper zones in the southern extension of the Jérémie Diorite along the northern contact of the SLDZ (Figure 7.5).

Gabbro Zones


The Gabbro Zones (a.k.a. the Main Gabbro Zone or Discovery Gold Zone) were the only known mineralization of significance before the issuer discovered the Tabasco-Cayenne-Contact and Area 51 zones. The Gabbro Zones consist of seven (7) mineralized zones from northeast to southwest: Trinidad Scorpion, Fresno (formerly Zone B), Chipotle (formerly Zone C), Anaheim, Cayenne 3 (formerly zones D and E and Naga Viper), Habanero and Serrano. The mineralized zones are restricted to a wide corridor of intensely altered gabbro, pyroxenite and leucogabbro, typically focused along internal contacts between different intrusive pulses, between two panels of argillaceous sediments, except for the Habanero zones, which are partially hosted in sediments. The zones are primarily concentrated in a flexure where the gabbro direction changes from WNW-ESE to E-W. The zones are predominantly located at the inflection of shear zones, where the dip changes from 70° to vertical. The general rake of the Gabbro Zones is subparallel to the mineral stretching lineations. The thickness of the mineralized envelopes varies from a few centimetres to 15 m.

Two different types of mineralization are distinguished: 1) massive, laminated or brecciated silica-sulphide zones along mafic dyke contacts or as isolated, irregular, metre-scale lens-shaped bodies inside the mafic dyke complex, and 2) narrow, lenticular or commonly tabular zones of silica-sulphide sericite alteration associated with small-scale (1-30 cm) shear zones primarily positioned along narrow dyke contacts.

Silicification, the dominant alteration, serves as a guide for exploration and is the key feature in guiding underground development. The general attitude of the silicified and mineralized envelopes is subparallel to the contact between the sediments and the coarse-grained mafic intrusive.

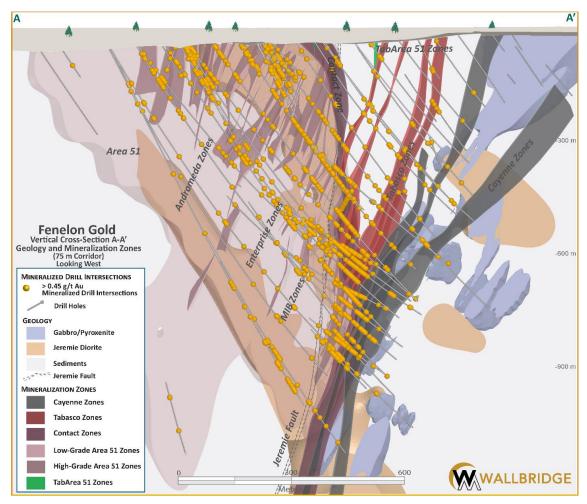
Gold mineralization is concentrated in the silicified envelopes and is associated with pyrrhotite, chalcopyrite and pyrite. Sulphides are mainly disseminated, although where silicification is locally more intense, they are contained in quartz veins. Pyrrhotite is the dominant sulphide, accounting for up to 30% of the silicified envelopes by volume, with intervals of massive pyrrhotite up to several centimetres wide. Chalcopyrite content generally varies from trace amounts to 15%, locally up to 40%. When present, pyrite occurs in trace amounts or up to 2%. Marcasite has been observed in drill core and is locally associated with gold mineralization. Native gold is common in drill hole intersections and the wall rock of underground workings. The grain size of visible gold can reach 4 mm.

From Wallbridge (2023)

Figure 7.5 – Geology and mineralized zones of the Fenelon Gold System

Tabasco, Cayenne, and Contact zones

The Tabasco-Cayenne-Contact system was discovered in 2019. It is bounded by the Main Gabbro to the northeast and the Jérémie Diorite to the southwest (Figure 7.5). The three zones have similar geological characteristics, but the Contact Zone has a slightly different orientation. The Tabasco and Cayenne zones trend N110 and dip steeply between 70° and 90° to the south. The Contact Zone generally trends at N125 but becomes E-W where it coincides with the Jeremie Fault and dips moderately to steeply


between 50° and 90° to the north. Together, they form an anastomosing and sheared mineralized system largely controlled by the stratigraphic units and Jérémie Diorite with numerous secondary splays. Along these shear zones, internal variations in dip define dilatational segments that accompany folded and boudinaged gold-bearing shear veins. These features may represent primary ore shoots. In some places, the zones follow dyke contacts

The dips of the Tabasco and Cayenne zones become shallower at a depth of 500 m, producing a thickening of the mineralized envelopes over a roughly 200-m vertical interval. This zone of shallower dips can be traced from section to section, plunging toward the northwest. Mineralization occurs mainly in the sediments, but the Contact Zone follows the Jérémie Diorite contact. The zones have now been traced to approximately 1200 m vertical depth (Figure 7.6 and Figure 7.7).

The mineralization is discrete with a low sulphide content (<5%) and weak quartz veining. It is mainly associated with silicification and sericitization. Gold intervals are associated with a pyrrhotite-chalcopyrite-sphalerite-arsenopyrite-pyrite-galena assemblage. Pyrrhotite alone often reflects barren intervals, indicating that gold was carried with chalcopyrite. Sulphides appear as disseminated blebs in the matrix or are found in quartz veins and as isolated stringers or semi-massive to massive veinlets and veins less than 10 cm thick. The sulphide content is generally proportional to gold grade. Arsenopyrite and pyrite appear early in the paragenesis. Free gold is common and is observed in quartz veins and the adjacent wall rock along fractures or at sulphide boundaries. The highest-grade intervals are associated with zones of massive to semi-massive sulphides, intense silica and sericite alteration, and quartz veins.

Most of the mineralization is pre- to syn-ductile deformation. Gold-sulphide-bearing veinlets, strings and blebs are sheared and stretched parallel to the foliation and stretching lineation. Sulphides have been observed in the axial planes of isoclinal folds and within the pressure shadows in boudinage necks. Chalcopyrite and free gold occasionally occur in brittle fractures perpendicular to sheared veins, indicating that part of the mineralization was remobilized late in the deformation history.

From Wallbridge (2023). Section A-A' in Figure 7.5.

Figure 7.6 – Cross-section A-A' (looking west) of the Area 51 and Tabasco-Cayenne zones

Area 51 zone

The mineralization in the Area 51 Zone (Figure 7.5) is dominantly hosted in the Jérémie Diorite but also extends into the sediments to the south and southwest. The zone is bounded by the Contact Zone to the north and northeast. The highest concentration of gold occurs where the Jérémie Diorite intrusion forms narrower stocks bounded by sediments or by sediments and a more mafic phase of the Jérémie Diorite.

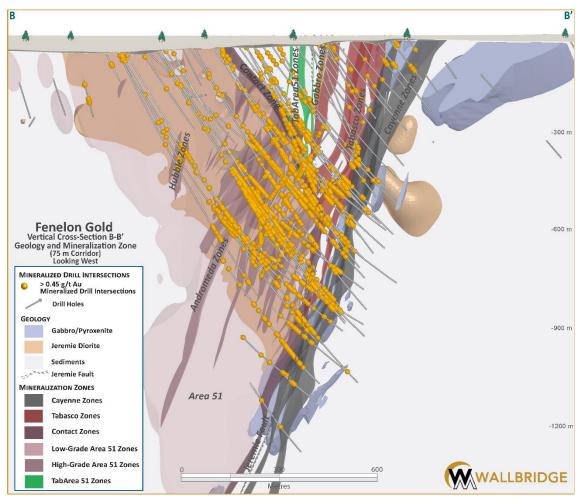
Gold mineralization is mainly associated with isolated or regularly spaced subparallel sheeted translucent grey quartz veins that are generally 1-2 cm thick and rarely up to 5 cm thick. It is uncertain under what structural conditions these veins formed. The current interpretation is that the vein formed in response to stresses during the emplacement of the Jérémie Diorite or the early stages of deformation and foliation development. Subsequent deformation events (local foliation and shearing) may have localized along the inherent anisotropies caused by the sheeted veins within the Jérémie Diorite. Vein contacts are usually sharp and sheared, with chlorite selvages. The veins have also been observed to be overprinted by a sulphide-rich stage, forming composite veins. The sulphide content in the veins is generally less than 3%, although some are dominated by sulphides.

Gold-bearing sulphides also occur as dissemination or as veinlets with chlorite selvages. Pyrrhotite and chalcopyrite are the major sulphides, followed by pyrite, sphalerite, arsenopyrite, marcasite and galena. Pyrite is more common in Area 51 than in other zones. Visible gold is commonly observed as isolated blebs in quartz veins or vein selvages. It is also found at sulphide grain boundaries or in fractures inside grains. White quartz-carbonate veins are late and unmineralized.

The Area 51 model contains 75 mineralized zones consisting of clusters of gold-bearing sheeted veins occupying corridors approximately 1-50 m wide and oriented parallel to the vein orientation: striking east-northeast and steeply dipping to the southeast. The Area 51 mineralization extends from the bedrock surface to a vertical depth of 1,200 m (Figure 7.7). Additional Area 51 style mineralization was intersected at 1,600 m by one drill hole testing the system at depth, it suggests that the system is deeper than the currently outlined footprint.

Alteration minerals within the zone include sericite, chlorite, silica, biotite, and albite. Local alteration characterized by K-feldspar or iron-carbonate with hematite is also present but is likely unrelated to the gold mineralization. Alteration is moderate, selectively replacing the matrix, or strong and pervasive, destroying the primary igneous textures. The transition is gradational between altered zones and relatively fresh intrusive rock.

Ripley-Reaper gold zones


The Ripley-Reaper zones represent a southern parallel series of mineralized zones akin to the Area 51 system. The zones are located approximately 250 to 500 m south of the Area 51 system and straddle the contact of the SLDZ (Figure 7.5)

The mineralization is preferentially hosted in the more felsic phase of the Jérémie intrusion, which is surrounded (and intercalated with) the more mafic phase; however, mineralization also occurs in the mafic phase and the adjacent sediments. It is associated with a pervasive replacement silica-sericite alteration of the Jérémie intrusion that yields

a relatively consistent distribution of gold grades. Higher-grade zones are associated with quartz veins containing visible gold and moderate sulphide content and arsenopyrite-pyrite+/-chalcopyrite stockwork veins.

The overall geometry of the Ripley ore zones is interpreted to be sub-parallel to the felsic phase of the Jérémie intrusion (Ripley West), which trends N050 and dips moderately between 40° and 50° to the south or controlled by shearing (Ripley East and Reaper), which trends N240 and dips steeply between 80° and 90° to the north.

From Wallbridge (2023). Section B-B' in Figure 7.5.

Figure 7.7 – Cross-section B-B' (looking west) of the Area 51 and Tabasco-Cayenne zones

7.4.2 Grasset Block

Gold mineralization on the Grasset claim block is associated with the SLDZ.

7.4.2.1 Gold

The Grasset gold discovery was outlined by drilling (2011–2014) at the contact between strongly deformed Timiskaming-type conglomerates and a mafic intrusive of the Manthet Group in the footwall of the SLDZ. The first drill hole intersected 33.00 m grading 1.66 g/t Au, including two higher-grade intervals of 6.15 g/t Au over 4.04 m and 4.18 g/t Au over 5.00 m. The mineralization is hosted in an anastomosing quartz-carbonate vein system along the contact and is open laterally and at depth.

7.4.3 Martiniere Block

Diamond drilling on the Martiniere claim block has defined several mineralized zones or showings along structural trends. At least three pyrite-dominant VMS systems also occur on the Martiniere claim block, although generally with negligible base and precious metal contents.

7.4.3.1 Gold

Gold mineralization typically shows a close spatial association with greater amounts of: (1) disseminated to (rarely) semi-massive pyrite, (2) carbonate and/or quartz alteration and veining, and (3) brittle to ductile structures. Lithology and alteration are somewhat different on the Bug Lake and Martiniere West trends, resulting in a distinction between "Bug Lake-style" and "Martiniere West-style" mineralization.

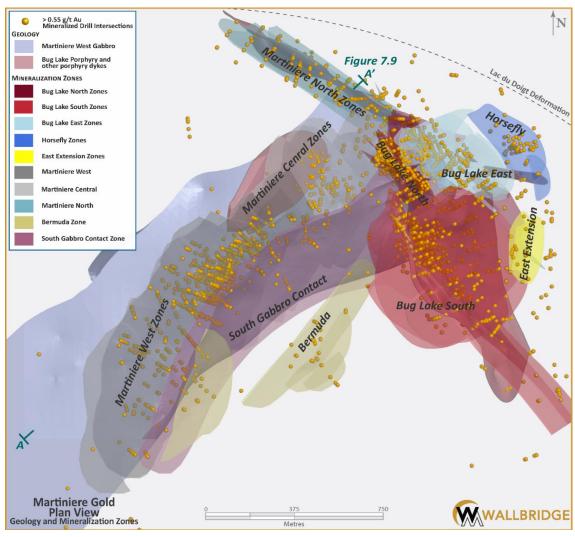
The Bug Lake zones (Figure 7.4) cover approximately 1 km of the Bug Lake Trend, which follows the brittle-ductile BLFZ. The BLFZ occurs at a high angle across stratigraphy and hosts the Bug Lake quartz porphyry. This porphyry is one of the few known non-stratiform Archean units on the Property.

The Bug Lake zones are divided into North and South zones (Figure 7.8), both centred on the Bug Lake porphyry and the BLFZ. The fault and porphyry dip an average of 60° to 80° to the east, exhibiting a ramp-flat structure in the North Zone and a more planar structure in the South Zone. Gold mineralization occurs adjacent to both the upper and lower contacts of the Bug Lake porphyry. The contact zones consist of ankerite- and/or dolomite-altered greenstone with 1-5% disseminated pyrite. They include one or more of 1) 0.1 to 10 m wide intervals of carbonate-quartz flooding; 2) veins and/or vein breccias; and/or 3) 0.1 to 1 m intercepts with 30-70% pyrite. Accessory minerals include tourmaline, telluride, arsenopyrite, chalcopyrite, galena and sphalerite. Vein breccias comprise angular fragments of coliform-textured carbonate-quartz veins, suggesting an upper crustal setting. Gold grades are highest in pyrite-rich intervals and strongly sulphidized wall rock. Veining is likely contemporaneous with alteration.

Within the ramp-flat structure of the North zone, gold mineralization is best developed along the steeper (i.e., ramp) parts of the structure. In the South Zone, the Bug Lake porphyry exhibits a more planar morphology with mineralization along the HWSZ and FWSZ of the BLFZ. The North and South zones also show gold mineralization along lithological contacts away from the deposit, suggesting that competency contrasts

between host rocks played a role in controlling gold mineralization. Pyrite-enriched graphitic argillite and semi-massive to massive sulphide typically contain anomalous gold, but the pyrite is most likely of a different generation than that associated with the Bug Lake and Martiniere West Trends.

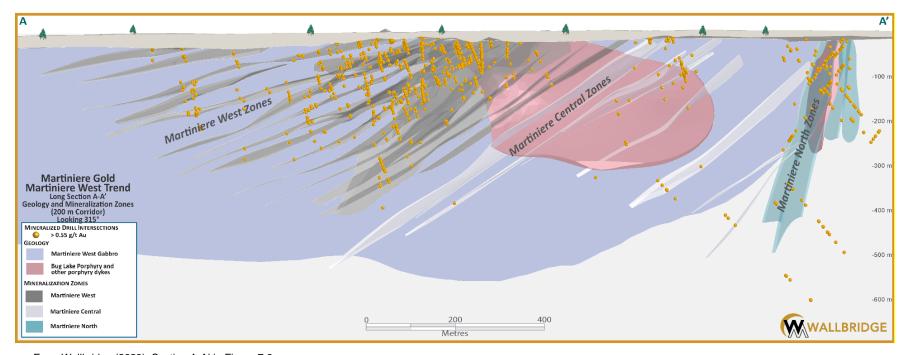
Narrow mineralized shear zones also occur further outboard of the Bug Lake lower and upper contact zones, or the Footwall subszones and Hanging Wall subzones (the "FWSZ" and the "HWSZ"). These narrow outlying subzones have returned some of the highest grades on the Property, with the FWSZ from the North Zone returning 8,330 g/t Au over 0.57 m and 1,255 g/t Au over 0.55 m. Examples of high-grade HWSZ include 195.5 g/t Au over 1.0 m and 36.0 g/t Au over 2.1 m.


Gold-to-silver ratios in the North and South zones indicate that mineralization is characteristic of orogenic gold deposits. Multi-element data shows a moderate positive rank correlation for gold with Ag and As (0.6>p>0.3).

The Martiniere West deposit is centred around a steep high-grade zone trending NNE comprising a series of mineralized, shallow-dipping subzones positioned obliquely to the steep trend (Figure 7.9). The Martiniere West shallow zones continue to the NE into the Martiniere Central zone. Both the Martiniere West and Central zones are hosted within the Martiniere West Trend. The Martiniere West Trend is stratigraphically concordant, 200 to 300 m wide, and defined by a weak deformation fabric, localized silicification and veining, and 1-5% disseminated pyrite. Elevated gold occurs throughout the Martiniere West Trend, but the highest grades occur within shoots hosted by silicified shear zones ("SSZ") and/or sets of quartz-dolomite ± sulphide veins ("QDL"). The SSZs and individual veins range from 0.1 to 10 m and 1 to 40 cm wide, respectively. Gabbro within the Martiniere West Trend is markedly non-magnetic, providing a useful marker for rocks that could host anomalous gold. Individual SSZs consist of guartz gabbro that is weakly to moderately sheared and silicified ± sericite-altered, hosting up to 20% disseminated pyrite with trace arsenopyrite ± chalcopyrite ± sphalerite. The mineralogy of the QDL veins suggests that they were derived from the same fluid flow event that produced the SSZs. Grades within the SSZ and QDL intervals range from >10 g/t Au over a few metres to 1 g/t Au over several tens of metres.

Multi-element geochemistry shows that the Au:Ag ratios at Martiniere West are characteristic of orogenic gold deposits. Gold shows moderate to strong positive rank correlation with Ag, As and Pb, with average As contents (1534 ppm) significantly higher than the Bug deposit (~300-900 ppm).

Several zones are considered extensions to known mineralized areas, such as the NW Extension, also referred to as the Martiniere North, East and Southeast zones in the Bug Lake Trend. Although some of the areas have shown promising results, follow-up drilling was unable to establish continuity for the mineralization.



From Wallbridge (2023)

Figure 7.8 – Geology and mineralized zones of the Martiniere Gold System

From Wallbridge (2023). Section A-A' in Figure 7.8.

Figure 7.9 – Long section of the Martiniere West Trend

7.4.3.2 Polymetallic

There are at least three pyrite-rich VMS systems on the Martiniere claim block. Martiniere East (Figure 7.8) is located immediately east of the BLFZ. The two other occurrences are in Grid #2 and Grid #3 towards the eastern limit of the claim block. All three systems are similar, with intercepts up to 50 m (core length) of massive (>60%) to semi-massive (25-60%) sulphides. The sulphide mineralogy typically comprises >99% pyrite. The mafic volcanic host rock is strongly altered to chlorite and calcite. Massive sulphide mineralization typically grades outwards, in both directions, into semi-massive sulphide and then pyrite-rich basalt (<25% sulphide). The exceptions are the so-called 'outlying' massive sulphide layers with sharp contacts and core widths of 1 to 5 m, usually occurring at an appreciable distance from the larger massive sulphide zone.

Mean gold contents are <0.3 g/t Au for the larger systems but can average up to 1 g/t Au for the outlying layers. Base metal enrichment is generally negligible, with the highest average grade returned from the Grid #2 VMS prospect at 0.14% Zn. An exception is drill hole MDE-15-172, which intersected 2.1 m of massive sulphide that averaged 1.52% Cu and 4.2% Zn in addition to 2.8 g/t Au and 29 g/t Ag. However, nearby drill holes returned only barren intervals in massive and semi-massive sulphides.

7.4.4 Other claim blocks

Significant gold mineralization has also been found on the Detour East and Casault claim blocks (Figure 7.2). Table 7.1 summarizes the mineralization encountered during past exploration programs.

Table 7.1 – Summary of significant mineralization found on other claim blocks

Claim Block	Mineralized Zones	Significant Results		
Detour East	Lynx and Rambo zones	Both zones are approximately 2.2 km apart along an E-W trending deformation zone. The Lynx Zone is the westernmost of the two. Notable assay results for diamond drilling on Lynx include 7.78 g/t Au over 7.25 m in drill hole MS-87-08 and 4.81 g/t Au over 13.34 m in drill hole LX-93-12 (MacTavish et al., 2017). Lynx was tested over approximately 300-400 m along strike and down to 250 m vertical depth. The Lynx Zone comprises a gently west-plunging, quartz-sulphide vein stockwork hosted in mineralized and altered mafic volcanics and is spatially associated with a sericitized shear zone. The exact geometry of the zone is unknown. The host quartz veins are subdivided into arsenopyrite + pyrite (apy+py) and chalcopyrite + sphalerite (cpy+sp) types, with cpy+sp veins typically hosting higher grades (>8 g/t Au) than the apy+py veins. The host mafic rocks are widely altered to ankerite and sericite and typically host 1-2% py. Closer to the gold-bearing veins, volcanic host rocks are silicified and may contain disseminated arsenopyrite as well. Notable assay results for the Rambo Zone include 6.3 g/t Au over 2.7 m in drill hole TU-86-1 and 6.51 g/t Au over 0.7 m in drill hole TU-86-2 (Brack, 1988). The Rambo Zone consists of quartz veins and stringers in a sheared package of mafic volcanic rocks, greywacke and graphitic		

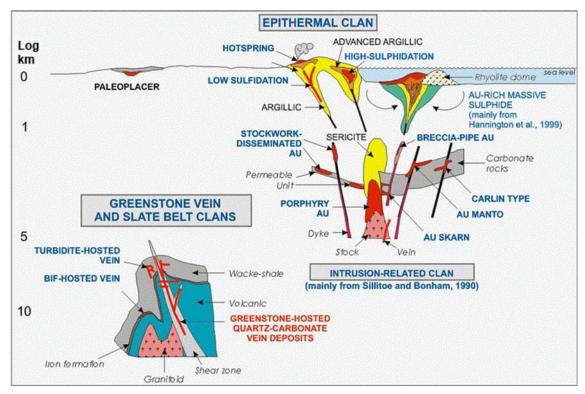
Claim Block	Mineralized Zones	Significant Results				
		argillite. The structural setting appears to be at the intersection of the E-W deformation zone and smaller NW-SE trending structures, with gold mineralization possibly concentrated into steeply NW-plunging shoots. The mineralized area was tested over approximately 300 m along strike and down to 200 m vertical depth.				
Casault	Vortex Zone (a.k.a. Zone 450)	Examples of the mineralization encountered in this zone included drill hole CAS-17-95, which intersected 1.30 g/t Au over 23.5 mincluding 3.46 g/t Au over 6.0 m; and drill hole CAS-17-96, which intersected 1.38 g/t Au over 26.2 m, including 7.87 g/t Au over 2.2 m. Results from the 2018 follow-up drilling in this area including 1.8 g/t Au over 25.7 including 3.8 g/t Au over 1.15 m. The mineralization occurs in a shear zone at the contact between Timiskaming-type sedimen and Manthet Group metavolcanics, possibly coincident with the SLDZ. The W-trending, high-strain gold zone is spatially associated with subalkaline to reddish albite-sericite-hematite-altered alkaline porphyritic dykes (Castonguay et al., 2020). The mineralization in this zone was encountered over an approximal distance of 500 m along the trend and down to 250 m vertical depth. The mineralized system remains open along strike and down-dip (https://wallbridgemining.com/our-projects/detour-gotrend/casault/ Wallbridge website consulted February 2023).				
	Northern part of Casault	New mineralization was intersected during the 2021 drill program on the Casault claim block. The first drill hole, CAS-21-123, targeted a regional-scale structure in the northern part, interprete from displacement in airborne total magnetic anomalies. Gold was intersected from 254.5 to 256.5 m; 6.85 g/t Au over 2.00 m. Other drill holes in the area targeting similar interpreted structures, intersected strong shearing, sulphide mineralization (Py, Cp and Po) and alteration. Most of the results for these drill holes are still pending. The combination of an airborne magnetic survey and lithologies intersected during the 2021 drilling program prompted a reinterpretation of the regional geology of the Casault Property. The principal modifications are: 1) the magnetic highs are dominantly pillowed mafic volcanic units with local magnetite within pillow seams; 2) a large body of magnetic pyroxenite was also intersected and interpreted as a magnetic high through the area; and 3) the magnetic low in the area were also on occasion mafic volcanics, quartz-felspar porphyritic felsic intrusives or minor fels and intermediate volcanics.				

8. DEPOSIT TYPES

The information presented in the current section is based on Faure et al. (2020), Myers and Wagner (2020) and Richard and Turcotte (2016). Other references are duly indicated where applicable.

The ore deposits and mineralized occurrences on the various claim blocks of the Property share many characteristics with the following deposit types: orogenic gold (e.g., Fenelon deposit, Bug Lake, Martiniere West and Grasset Gold) and volcanogenic massive sulphide ("VMS") deposits (e.g., Martiniere East). Descriptions of the different deposit types are summarized below.

8.1 Orogenic Gold

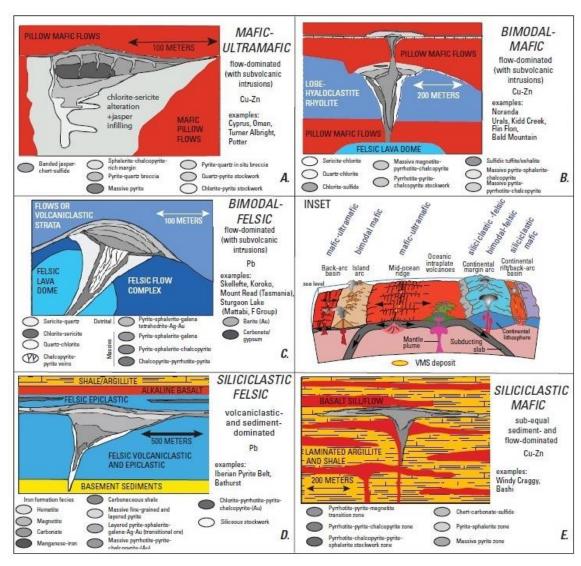

Metamorphic belts like the Abitibi Greenstone Belt are complex regions where accretion or collisions have added to or thickened the continental crust. Gold-rich deposits can form at all stages of this orogen evolution so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other (Figure 8.1).

Most gold deposits in metamorphic terranes are adjacent to first-order, deep-crustal fault zones (e.g., Cadillac–Larder Lake, Porcupine-Destor, Casa Berardi and Sunday Lake in the Abitibi), which show complex structural histories and may extend along strike for hundreds of kilometres, with widths up to a few thousand metres (Bleeker 2015 and Bedeaux et al., 2018). Fluid expulsion from crustal metamorphic dehydration along such zones was driven by episodes of major pressure fluctuations during seismic events.

Ores formed as simple to complex networks of gold-bearing, laminated quartz-carbonate fault-fill veins in second-order and third-order shears and faults, particularly at jogs or changes in strike along the major deformation zones. Mineralization styles vary from stockworks and breccias in shallow, brittle regimes to laminated crack-seal veins and sigmoidal vein arrays in brittle-ductile crustal regions to replacement- and disseminated-type orebodies in deeper ductile environments. Fenelon is interpreted to have been formed in the latter.

Most orogenic gold deposits occur in greenschist facies rocks, but significant orebodies can be present in lower-grade or higher-grade rocks. The mineralization is syn- to late-deformation and typically post-peak metamorphism (Gaboury, 2019). It is typically associated with iron-carbonate alteration. Gold is largely confined to the quartz-carbonate vein network, but significant amounts may also be present in iron-rich sulphidized wall-rock selvages or silicified sulphide-rich replacement zones. One of the key structural factors for gold emplacement is the late strike-slip movement event that reactivated earlier-formed structures within the orogeny, a condition that has been achieved along the SLDZ.

Note the logarithmic depth scale. Modified from Poulsen et al. (2000).


Figure 8.1 – Types of gold deposits and their inferred deposit clan

8.2 VMS Cu-Zn-(Aq-Au)

VMS deposits are a product of hydrothermal convection systems in the seafloor that are typically established within extensional tectonic settings (Figure 8.2). Thinned lithosphere and magmatism associated with rifting cause heating and changes to the seawater trapped in the adjacent volcanic strata. Heat-induced water-rock reactions result in metal leaching and the formation of hydrothermal convection systems. Long-lived hydrothermal systems ultimately discharge hot, metal-rich hydrothermal fluids from deep-penetrating, synvolcanic faults onto the seafloor or into permeable strata immediately below the seafloor to form VMS deposits. VMS deposits are mined as important sources of zinc, lead, copper, silver and/or gold and may also be endowed with cobalt, tin, selenium, manganese, cadmium, indium, bismuth, tellurium, gallium and germanium. A typical VMS deposit comprises a concordant lens of massive sulphides (greater than 60% sulphide minerals), underlain by a discordant stockwork zone typically comprising stockwork veins and stringers of vein-hosted sulphides in a pipe-like body of hydrothermally altered rock. The most abundant sulphide mineral is typically pyrite, followed by pyrrhotite, chalcopyrite, sphalerite and galena.

To date, the only known VMS occurrences north of the SLDZ are Martiniere East, Grid #2 and Grid #3. However, the Manthet and Brouillan-Fenelon groups on the Property are prospective for this type of mineralization associated with mafic VMS deposits that occur in primitive oceanic back arcs. VMS mineralization associated with the felsic horizons in the eastern claim blocs is also a possibility (e.g., Grasset).

From Morgan and Schulz (2012).

Figure 8.2 – Types of VMS mineralization and tectonic settings

9. EXPLORATION

This item presents the issuer's exploration work on the Property and was modified and updated from the previous technical report on the Property (Pelletier and Nadeau-Benoit, 2021).

9.1 Surface Exploration

9.1.1 Historical core resampling

In 2016, Wallbridge quickly commenced exploring the property it acquired from Balmoral. The program on the renamed Fenelon Gold Property involved a review of historical underground drilling and a sampling program involving previously unsampled historical drill core. The assay results from the first three sample batches included one with visible gold that yielded 89.3 g/t Au over 0.35 m.

Wallbridge announced the assay results from the first two batches in the press release of November 16, 2016. Of the 176 samples (179 m), 25 (14%) returned gold values greater than 0.5 g/t. Highlights included:

- 89.30 g/t Au over 0.35 m in drill hole 1050-005
- 4.21 g/t Au over 0.72 m in drill hole 1100-001
- 3.91 g/t Au over 0.99 m in drill hole 1110-001
- 2.55 g/t Au over 1.57 m in drill hole FA-02-214

Assay results from the third batch were announced in the press release of December 5, 2016. Of the 275 new samples, 3 returned gold values greater than 5 g/t, 29 (>10%) returned >0.5 g/t, and 34 returned grades ranging from 0.5 g/t to 0.1 g/t. Highlights included:

- 19.7 g/t Au over 1.90 m in drill hole 1050-005, including:
 - o 47.94 g/t over 0.75 m
 - o 89.3 g/t over 0.35 m
- 8.37 g/t Au over 1.25 m in drill hole 1040-002; together with historical assays, this forms part of an intersection of 20.17 g/t Au over 6.21 m

To date, approximately 25,914 m of previously unsampled drill core have been collected.

9.1.2 Induced Polarization Survey

In January 2019, a ground OreVision® induced polarization ("IP") survey was carried out by Abitibi Geophysics Inc. ("Abitibi Geophysics") to test a 600-m strike length of the gold-hosting environment northwest of the Fenelon deposit (Chemam, 2019). Gold in the Fenelon deposit is associated with sulphides and silicification. IP was considered an appropriate exploration tool as it detects occurrences of disseminated sulphides (as low as 0.5%) and semi-massive to massive, non-conductive clusters (i.e., silicified or electrically discontinuous).

The survey covered 12 lines (from L 6+50W to L 1+00W), each 1.2 km long. The lines were regularly spaced at 50 m intervals. The aim was to map the resistivity and polarizable properties of the geological formations underlying the Property. The

parameters used by Abitibi Geophysics for this survey (a = 25 m, n = 1 to 30) made it possible to push data interpretation to a minimum depth of 300 m below the surface.

Quality control was performed both before and during data acquisition and at the base of operations. All the recorded readings were validated (100%).

The validated data were subjected to 3D inversion using the Geosoft DC-IP VOXI platform. The purpose of the inversion process is to convert surface IP/Resistivity measurements into a realistic model. From the resulting resistivity and chargeability models, Abitibi Geophysics generated contour maps of resistivity and chargeability and vertical sections as Oasis Montaj map files.

These results were integrated with existing geophysical data to produce a 3D model, which was used to guide geological modelling and drill targeting.

9.1.3 Fenelon, Casault, Harri and Grasset Airborne Magnetic Surveys

The information presented in this section is largely based on Kiavash (2020), Gagnon-Nandram & Parvar (2022) and information provided by Wallbridge geologists (internal communication, December 2022).

Detailed airborne magnetic surveys were conducted over the Fenelon, Casault, Harri and Grasset claim blocks between 2020 and 2022. The surveys used an unmanned aerial vehicle ("UAV") combined with a Satellite-based DTM (Airbus WorldDSM™) on Fenelon, and a digital surface model ("DSM") on Casault, Harri and Grasset to help minimize the possible topographic effects on the magnetic data.

The survey over the Fenelon Block was completed between June 19 and August 21, 2020. A total of 4,996 line-km at 20-m line spacing was flown, with tie lines at 200 m. The survey's tight line spacing close to the ground yielded high-resolution data. Magnetic surveys are considered an important exploration tool for the Property as they help map intrusions (e.g., gabbro and diorite rock units) and outline structures potentially related to the gold-bearing system. Magnetic surveys played a key role in the discovery of mineralization in Area 51, successfully supporting the drill testing of magnetic lows parallel to known gold mineralized zones.

The survey over the Grasset Block was completed in June 2022. It concentrated on the Eastern portion of the property, covering some of the claims acquired later by Archer through a transaction with the issuer announced on July 13, 2022. The survey was combined with a 12 m resolution DSM to help minimize the possible topographic effects on the magnetic data. The survey was designed using a regular line spacing of 40 m, 400-m spaced tie lines, and a North-South orientation covering 627.4 line-km. A total of three maps over designated claims of the Grasset Property were delivered and discussed. The survey correlates with previous observations and can be considered valid. The magnetic highs correspond to mafic intrusions and gabbro sills that are usually magnetic in drill core, although no drilling has been done in this area. The central and northern portions of the survey area are consistent with the basalts and volcanic rocks of the Manthet Group, which would explain their moderate magnetic intensity. The magnetic low in the south of the survey area corresponds to a turbiditic sedimentary basin (Riviere Turgeon Fm.). Possible folding can be inferred in the different units. This survey was conducted over an area with a thick overburden coverage, difficult to access in the summer season, and with little available data. It has proven to be an effective method that furthers the resolution of previous geophysical works. This study will help refine

potential future targets and interpret geological and structural features on the Grasset Property.

The survey over the Casault Block was concentrated on the eastern portion. A small portion of the survey over the Harri Block extended onto the Fenelon Block. Both surveys were completed in the winter of 2022. The surveys were designed using a regular line spacing of 40 m, 400-m spaced tie lines, and an orientation of 035-215° for a total of 1,024.81 line-km flown over Casault and 2,782.4 line-km over Harri. The TMI maps show significant correlations with the interpreted geology. The higher-resolution magnetic data produced by this survey will allow Wallbridge to further interpret the geology and mineralization potential and to better develop future exploration programs.

9.1.4 Fenelon, Grasset and Casault Biogeochemical Survey (Tree Bark Sampling)

Tree bark sampling can be a useful tool when exploring for gold in areas with little to no bedrock exposure due to thick overburden. Bark sampling programs were completed on the Fenelon, Grasset and Casault claim blocks, where overburden reaches more than 100 m thick.

Black spruce bark was sampled by Wallbridge personnel for both the Casault and Grasset programs. Sampled trees must have similar trunk width, height and health and grow in areas of similar tree density. A stainless-steel paint scraper was used to scratch away the textured bark at chest level, and the material was caught using a modified dustpan. Approximately 100 g of bark material was collected and stored in paper bags. For quality control, a duplicate sample was taken every 20th sample from the same tree or another tree in the same area.

A total of 159 samples were collected on the Fenelon Block (including 11 duplicates), 148 samples were collected on the Casault Block (including 16 duplicates), and 81 samples were collected on Grasset (including 4 duplicates). All samples were processed at the Actlabs laboratories in Ancaster, Ontario, using a process specifically designed for this type of biogeochemical survey (lab code "2G"). The samples were dried before being dissolved in acid and analyzed for a 63-element suite by inductively coupled plasma mass spectrometry ("ICP-MS").

For the survey on the Fenelon Block, two N-S lines were cut 850 m apart, totalling 3.5 km and were sampled at a 25 m spacing between samples. The first line, the East line, was located southeast of the mine site (historical open pit and ramp of the Fenelon deposit), east of Area 51. The second line, the West line, was located over the western portion of the mine site, where some drill holes intersected near-surface mineralization.

The initial observation from the raw biogeochemistry data showed promising results, although the effect of glacial dispersion appears to influence some of the elements. The program also helped determine the elements useful to detect mineralization for the Fenelon deposit within till-covered bedrock: Ag, As, B, Ba, Bi, K, Ca, Fe, Hg and Ti.

The southern part of the East line showed an anomaly in Au, As, Cu, Ag, Bi, Pb and Ti that does not correlate to any known mineralization. Anomalies on the West line in Au, As, Cu, Ag, Bi, Sb, Pb, Ti, Tl and Th were observed above the near-surface mineralization intersected by drill holes; other zones with projected low-grade shells close to the surface do not show similar anomalies on the West line.

For the survey on the main Casault Block, two sets of 2 lines were completed on the Vortex and Casault South zones, with 300 m between lines and 50 m between samples. The objective of the Casault biogeochemical survey was to:

- Correlate known gold occurrences (in the Vortex Zone) with biogeochemical results; the center of the western transect overlies one of the highest gold intersections of the Property.
- Identify anomalies to generate potential drill targets.

The initial observation from the raw biogeochemistry data shows an isolated high gold occurrence in this area. At Casault South, the northern portion of the eastern transect presents punctual gold anomalies associated with a slight elevation in bismuth. Copper is also anomalous in that part of the survey. However, a significant amount of the anomalous values is dispersed over the different sampling locations, making it difficult to generate targets with this survey alone.

Follow-up work and further treatment will be completed to assess these anomalies and determine if they are representative of possible mineralization in the areas sampled.

9.1.5 Casault and Casault East Mapping Program

Small mapping programs were completed by Wallbridge personnel on the main Casault claim block in the summer of 2021 and on the eastern Casault claim blocks in the fall of 2021.

Multiple outcrops of mafic volcanic rocks and gabbro were observed during the 4-day summer mapping program. Veins included milky quartz veins and carbonate-epidote veins with trace pyrite. A total of 15 samples were collected, with one blank for quality control purposes. All samples were sent for gold analysis by fire assay and whole rock analyses, and one of the samples was sent for additional metals analysis.

For the fall program, a small mapping program was completed on the eastern part of the Casault Block. Four outcrops were examined during three days of mapping. Three of the outcrops were mafic volcanics with quartz-carbonate veins, with some displaying chlorite margins. Seven (7) samples were collected from this outcrop (4 from veins and 3 from mafic volcanics). The last outcrop was finely bedded argillite or mudstone; no veins were observed on the outcrop (1 sample was collected but not assayed). The seven (7) samples from the veined volcanic outcrop were sent for gold by fire assay along with one blank for quality control), and three (3) of the outcrop samples were also sent for whole rock analyses.

Even though the samples submitted for assays did not return any anomalous results, the veining and pervasive sericite and chlorite alteration indicate the presence of hydrothermal activity in the area. Additional exploration work (mapping campaign, till sampling, sonic drilling, geophysics methods) on the Casault Property to further investigate the prospectivity of the area.

9.1.6 Casault East and Harri Till Sampling Program

A till sampling program was conducted on the east block of the Casault (Casault East) Property, and an outcrop reconnaissance survey followed by a till sampling program were conducted on the Harri Property during the fall of 2022. The relatively thin overburden at the Casault East and Harri Properties makes it a prime location for testing till sampling

as a vector for mineralization along the SLDZ. The Casault East and Harri programs were both sampled by Wallbridge personnel.

The traverses were all completed on foot, and the samples were collected using a hand auger and shovel at intervals of 75-100 m, depending on the terrain. For each sample, approximately 0.3 kg of representative till was collected from the B and C soil units and described in terms of colour, grain size, plasticity, composition, and pebble content. The samples were placed in soil sample bags that were labelled with the station number. If till had not yet been intersected at the maximum depth of the hand auger (130 cm), no sample was collected.

At the end of each field day, the sample bags were opened and left in an empty office to dry for several days. When sufficiently dry, the samples were placed in a plastic sample bag with an assigned sample tag from Bureau Veritas Laboratories. The plastic bag was labelled with the sample tag number and sealed for shipment to the Bureau Veritas laboratory in Timmins, Ontario. OREAS 46 and OREAS 47 blanks were added to the sample sequence after every ten (10) samples for quality assurance purposes. Wallbridge employees conducted all sample handling before their shipment to the laboratory.

For the Casault East program, three till sampling traverses were completed and 34 till samples were submitted for geochemical analysis. Two areas of elevated Ag were identified down-ice from prospective structures associated with the SLDZ. Relatively elevated Cu-Pb-Zn-Fe concentrations in the southern work area may indicate base metal mineralization associated with mafic volcanic rocks in the up-ice direction. No anomalous Au values were observed, and the lack of correlation between Au and the other elements of interest indicates that the relative enrichments of Ag, Cu, Pb and Zn are unlikely to be significant for gold exploration. Their enrichment does, however, indicate the presence of some metal enrichment in the area.

Outcrop reconnaissance traverses were completed for the Harri program, but no outcrops were encountered during either traverse. It was followed by three till sampling traverses, along which 52 till samples were collected for geochemical analysis. Three areas of anomalous metal content were identified, with elevated Ag-Mo concentrations in the northern region of the study area, elevated Cu-Pb-Zn-As-Fe in the eastern region, and elevated Au in the central region.

9.1.7 Magnetic Gradiometer Survey

A Heli-GT helicopter-towed, three-axis magnetic gradiometer survey was flown by Scott Hogg and Associates ("SHA Geophysics") on behalf of Kirkland Lake Gold (now Agnico) over the southeastern part of the Detour East Property on January 23, 2022, and from January 26 to January 30, 2022 (Fournier, 2022). A total of 1147 km of data was collected. The line spacing was 50 m (North-South direction), and the nominal terrain clearance of the four magnetometers was 30 m. The control spacing was 1000 m was completed in a East-West direction. The magnetometers measured the total field magnetics and the three orthogonal gradients. The measured magnetic gradients were used to produce an enhanced gridding total magnetic field grid using SHA Geophysics' proprietary gradient gridding algorithms. This yielded a significantly higher-resolution magnetic survey than flown before, which was useful for interpreting the area's geology. Previous surveys, such as the VTEM survey (GM63646), provided additional information to interpret the data. The interpretation divided the area into regions of similar magnetic

intensity, lineation, and texture. Where possible, based on magnetic intensity values, the areas have been interpreted to be various geological units. A few faults were also interpreted from the dataset (Munro, 2022; Lo, 2022).

The interpreted geology map should be correlated with geology known from drill results or mapping to produce a better map. Areas showing structural complexity, which may be prospective for gold mineralization, should be prospected or examined further.

9.1.8 2022 Field Program on Detour East Block (Completed by Agnico)

The 2022 Field Program completed by Agnico (JV with the issuer on the Detour East Block, see Section 4.3) consisted of mapping and prospecting, high-resolution drone imagery, soil sampling and a review of historical core.

Outcrops were identified either by satellite imagery, from previous work, or by fly overs in the helicopter. Four days were spent traversing 28km of the Turgeon River on the property with the two zodiacs. Several large outcrops were mapped in details and flown with a high-resolution drone. The Massicotte deformation zone crosses the Turgeon River in several locations and efforts were taken to locate any outcrops in these areas. An additional three days of field mapping used the helicopter to visit outcrops not accessible by boat.

No significant gold values were returned from the twenty-six (26) samples submitted. Geological compilation of all previous data is ongoing. Eleven (11) samples of volcanic and intrusive rocks collected over the summer were sent for major, trace and rare earth elements to help geochemically classify these rocks, results are pending (Agnico, 2023).

9.2 Underground Exploration

9.2.1 Bulk Sample

Following the 2017 surface drilling program, the issuer updated the interpretation of the mineralized zones and planned a bulk sampling program. Dewatering of the Fenelon pit and underground infrastructure was completed by mid-Q2 2018. Underground development began on June 10, 2018.

The bulk sampling program was completed in Q1 2019. As part of this program, the issuer completed approximately 2,100 m of underground development, establishing four mining horizons and the infrastructure required to mine the first vertical 100 m of the deposit. The development program was designed to meet the operating requirements for a 400 tpd operation.

From September 2018 to February 2019, ore was processed at the Camflo Mill near Vald'Or. Production was from five (5) stopes and low-grade ore that remained after the 2004 bulk sample. The issuer's bulk sampling plan included this low-grade ore as part of the first mill run while milling performance was optimized. Lessons learned from the first mill run were applied to the next mill runs to achieve recoveries above 98%.

The results of the 2018-2019 bulk sample were as follows:

- Stope grades ranged from 10.94 to 38.33 g/t Au
- 33,233 t of ore yielded a reconciled average grade of 18.49 g/t Au containing 19,755 oz

• 2,277 t of low-grade ore (the remaining material from the 2004 bulk sample) yielded a reconciled grade of 4.23 g/t Au for a gold content of 310 oz

These results were used to calibrate the Gabbro Zones interpolation parameters for the the 2021 and 2023 MRE.

Figure 9.1 provides a 3D view of the development for the bulk sample and the mined stopes. A summary of the results is also shown.

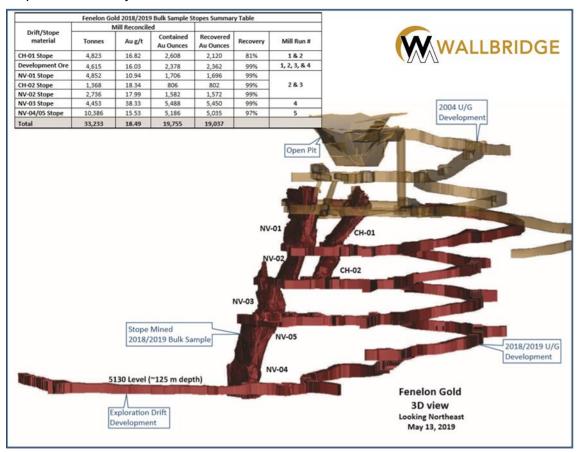


Figure 9.1 – 3D view and results of the 2018-2019 bulk sample

9.2.2 Exploration Drift

Since 2019, the issuer developed an exploration drift starting from the 2018/2019 underground bulk sample development. This exploration drift was developed mainly in 2021 and completed by January 2022. It totalled approximately 1,800 m between the Area 51 and Tabasco areas. The development was successful in providing access to Area 51 mineralization for the first time and establishing drilling platforms that can be used for future underground drilling. The development reaches approximately 180 vertical metres below the surface.

9.2.3 Underground Geological Mapping and Sampling

The new development provided the opportunity to perform muck and chip sampling and detailed geological and structural mapping. Exposures to typical Area 51 mineralization and its main host rock, the Jérémie Diorite, increased confidence in the continuity and robustness of the networks of sulphide-rich quartz veins characteristic of this zone. Detailed face and back mapping and collecting structural data also helped to better understand the structural controls and lithological contacts.

Additionally, a MAPTEK 3D scan (survey) was conducted in March 2022, and structural picking using PointStudio software allowed for further observations and interpretation.

An estimated total of 2,836 t of underground material, corresponding to 12 rounds, or approximately 30 m, were removed from the Area 51 Zone, with muck samples returning an average grade of 1.94 g/t Au. In addition to muck sampling, face and wall chip sampling was also performed, resulting in a better understanding of grade distribution. The highest gold value from a chip sample returned 54.46 g/t Au and was associated with a quartz vein.

10. DRILLING

This section includes a summary of the issuer's drilling activities on the Property from February 2, 2017, to December 14, 2022.

Drilling data was provided by the issuer's geology team or obtained by the QPs during their site visits and subsequent discussions.

Highlights of historical drilling by former owners are presented in Item 6.

10.1 Drilling Methodology

Drilling was carried out by Youdin-Rouillier Drilling and Major/Norex Drilling (2019, 2020, 2021, and 2022), Jacob & Samuel Drilling Ltd (2017 and 2021) and Foraco Canada Ltd (2018). Drilling was conducted with NQ calibre (47.6 mm core diameter) and included downhole orientation surveys. The surveys were performed by the contractor, and results were transferred to Wallbridge geologists digitally or on paper after each work shift.

Deviation surveys in 2017 consisted of single-shot measurements taken every 30 m while drilling using a Reflex tool (REFLEX EZ-SHOT™) and multi-shot measurements every 10 m in the completed drill hole using the North-Seeking Gyro instrument.

From 2018 through 2022, deviation surveys used the REFLEX EZ-TRAC™ and REFLEX GYRO SPRINT-IQ™ tools to record deviation measurements every 6 to 12 m for underground drill holes, and the REFLEX EZ-GYRO™ tool every 12 m for surface drill holes.

Since September 2018, oriented drill core has been obtained from most surface and underground holes using the REFLEX ACT III RD^{TM} system.

Wallbridge geologists used front-sight and back-sight stakes to align the direction of drilling at the collar position. The drillers aligned the rig with these markers and started the hole. In 2017, the geologists used the Mazac Easy Aligner to set up the sight markers, but the REFLEX TN14 GYROCOMPASS™ has been used since 2018. Collars were later surveyed by the issuer's surveyors using an RTK system or a Total Station.

Generally, holes are drilled with maximum stabilization using 6-m hexagonal core barrels with a 36" or 18" shell on the surface and 3-m hexagonal core barrels with an 18" shell underground.

As per the issuer's standard procedures, the driller helper places the core into core boxes at the rig, marking off every 3-m run with wooden blocks. Once a box is full, the helper wraps it in tape. Drillers deliver the core to the issuer's core logging facility daily.

When the drill hole is completed, the collars of surface drill holes are capped with metal reflective flags, whereas underground drill holes are marked with metal tags screwed either into the rock or to the casing displaying the drill hole number.

10.2 Core Logging Procedures

In the core shack, Wallbridge employees place the boxes on logging tables and check that the core is continuous and that distances are correctly indicated on the wooden blocks placed every 3 m. The core is measured, and each box is labelled with an aluminum tag displaying the drill hole number, box number and depth interval. The

geologists rotate the core so that all the pieces are oriented one way, showing a cross-sectional view.

When working with the REFLEX ACT III RD™ system to produce oriented drill core, the core is lined up according to the driller's marks drawn at the end of each 3-m drill interval indicating the lower portion of the drill hole. Once the geologist can join all the pieces of the core back together in a 3-m interval, a blue line joining the marks is traced on the underside of the core.

For every 3-m run, the total length of fragments shorter than 10 cm is recorded in the RQD log, and the number of naturally occurring fractures in each section are counted and recorded. If core loss is observed, this is also entered. The log automatically calculates the RQD value for the section. Core recovery percentages are calculated over the same sections.

Geological logging is then performed, recording the following features in the acQuire software: lithology, grain size and texture, colour, alteration type and strength, sulphide type and concentrations, veining details (type, width and density), and structural features (foliation, shearing, brecciation, faulting).

If the core is oriented, the alpha and beta angles of structural features are measured using a protractor and a metal ring tool, respectively.

Geologists have access to an XRF analyzer for rapid material characterization. The XRF analyzer is mostly used to help geologists identify uncertain lithological units.

Sampling intervals are marked with a red marker. Sample boundaries respect lithological boundaries and/or major changes in alteration/mineralization. Sample numbers are written on the core boxes corresponding to the pre-printed sample tags placed in the box for each sample interval. A photographic record of both dry core and wet is taken of every core box and stored on the server and also archived in Wallbridge's Imago Cloud Library.

Sample lengths typically range from 0.5 to 1.5 m. Once logged and labelled, samples are sawn in half using a circular rock saw. One half of the core is placed in a plastic bag along with a detached portion of the unique bar-coded sample tag for shipment to the laboratory, and the other half of the core is returned to the core box, and the remaining tag portion is stapled in place.

The witness drill core is stored onsite, either outside in core racks or in the Megadome structure. An Excel spreadsheet serves as an inventory of the location of every box in the core storage area.

10.3 2017 to 2022 Drilling Programs

The issuer drilled 1073 drill holes (surface and underground) on the Property from 2017 to 2022, for a total of 474,000 m. Table 10.1 summarizes the issuer's annual drilling totals.

Figure 10.1 shows the positions of the drill holes by year on the Fenelon Block, Figure 10.2 shows the 2021 drill holes on the Martiniere Block, and Figure 10.3 shows the 2021 drill holes on the Casault Block. The reader is referred to Figure 7.6From Wallbridge (2023). Section A-A' in Figure 7.5.

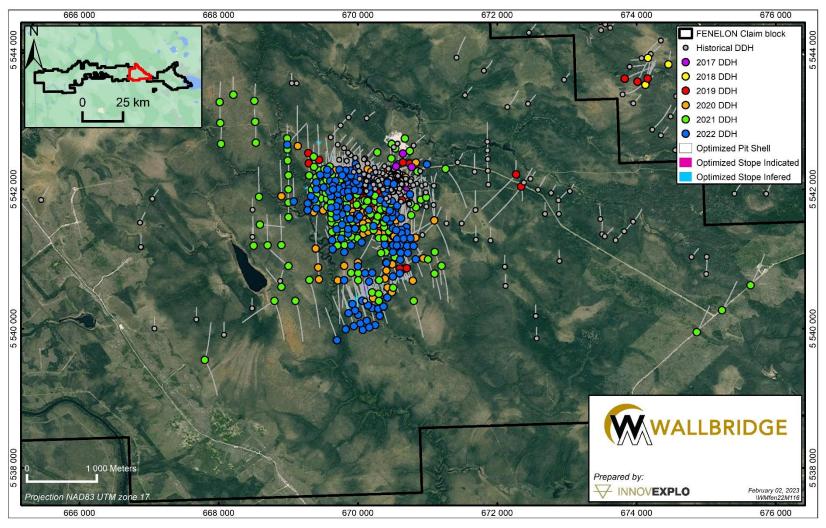

Figure 7.6 and Figure 7.7 for representative examples of drill sections on the Fenelon deposit and Figure 7.9 for the Martiniere deposit.

Table 10.1 – Summary of 2017 to 2022 drilling programs

		Surface		Underground		Total	
Year	Claim Block	Drill hole Count	Length (m)	Drill hole Count	Length (m)	Drill hole Count	Length (m)
2017	Fenelon	33	6,346	-	-	33	6,346
2018	Fenelon	21	7,412	92	10,902	113	18,314
2019	Fenelon	64	45,830	167	31,556	231	77,386
2020	Fenelon	127	96,889	49	3,130	176	100,019
2021	Fenelon	240	111,283	13	2,847	253	114,130
	Casault	13	5,256	-	-	13	5,256
	Martiniere	13	9,384	-	-	13	9,384
	Grasset	5	3118	-	-	5	3,118
2022	Fenelon	185	114471	3	450	188	114,921
	Casault	3	993	-	-	3	993
	Martiniere	40	21387	-	-	40	21,387
	Grasset	5	2786	-	-	5	2,786
TOTAL		749	425,155	324	48,885	1073	474,040

Some of the regional drill holes (remote from current mineral resource) were drilled by Balmoral prior to being acquired by Wallbridge in 2020. Please refer to Table 10.1 for the drill hole count completed by the issuer during these years.

Figure 10.1 – Holes drilled on the Fenelon Block from 2017 to 2022

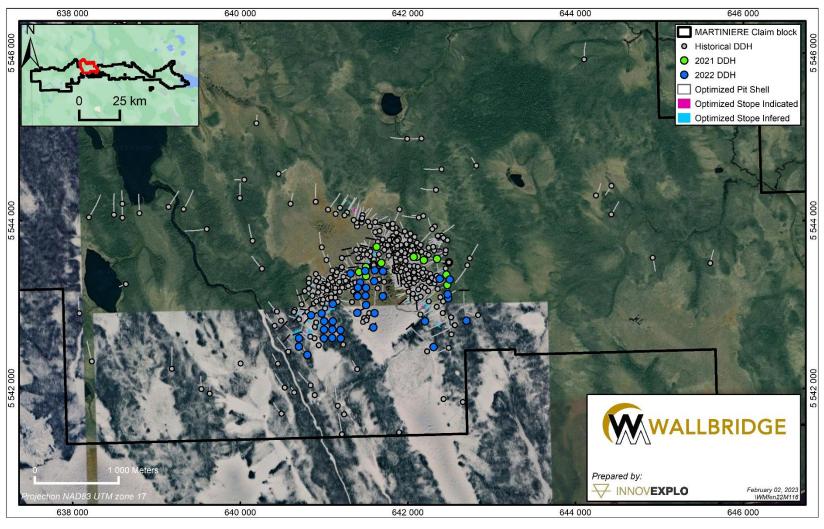


Figure 10.2 – Holes drilled by Wallbridge on the Martiniere Block in 2021-2022

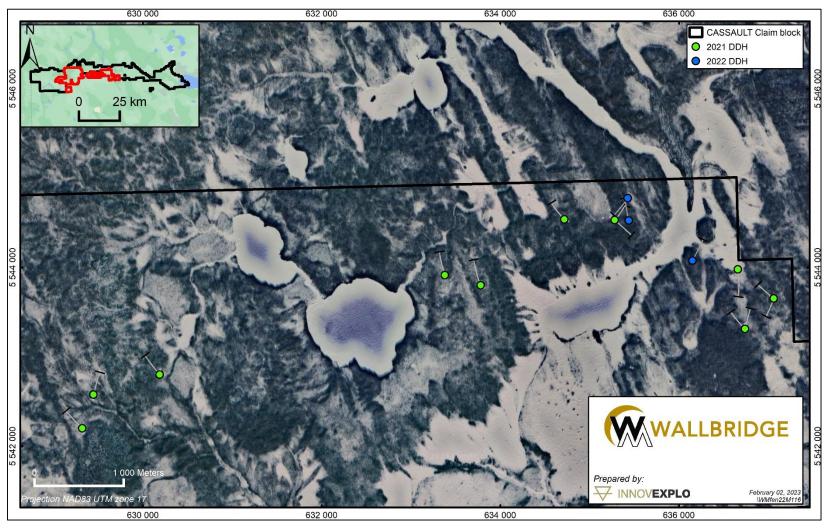
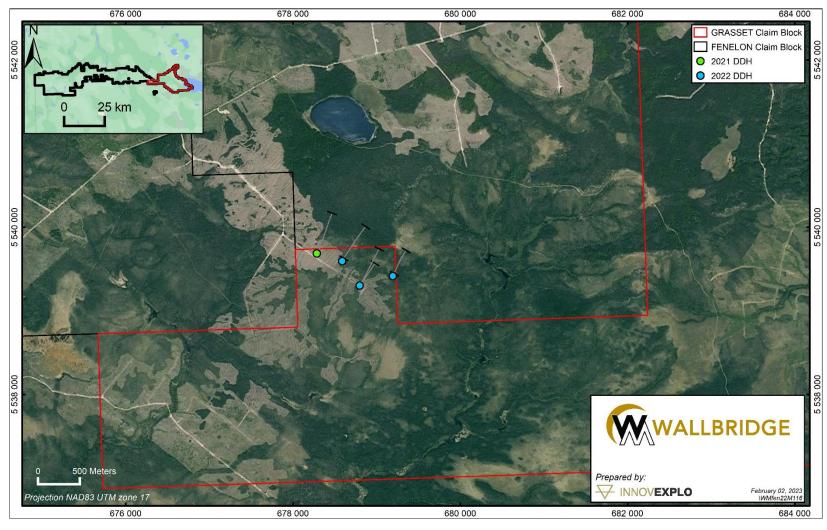



Figure 10.3 – Holes drilled by Wallbridge on the Casault Block in 2021-2022

Note: These holes were drilled by the issuer prior to the transaction with Archer.

Figure 10.4 - Holes drilled by Wallbridge on the Grasset Block in 2021-2022

10.3.1 2017 Drilling Program

In 2017, the main objective was to use surface drill holes to expand the exploration targets near existing infrastructure and above a depth of 150 m. Mineralization was confirmed to a distance of 120 m from the existing deposit, and two new gold-bearing structures were identified. Table 10.2 presents the most significant results from the 2017 program.

Table 10.2 – Significant results of the 2017 drilling program

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/Corridor
FA-17-07	122.10	129.16	7.06	141.16	
FA-17-17	134.86	137.92	3.06	311.08	Naga Viper
FA-17-26	139.83	146.85	7.02	260.44	
FA-17-27	130.12	134.85	4.73	80.42	Habanero
FA-17-31	45.60	46.62	1.02	18.95	Cayenne
FA-17-32	105.55	106.21	0.66	11.30	Habanero

10.3.2 2018 Drilling Program

In 2018, the issuer conducted an underground and surface diamond drilling program. The underground campaign ran from early June to the end of December. The aim of the surface program, which ran from August to December, was to follow known mineralized zones to depths of 300 to 400 m and to test for additional zones away from the mine workings.

Mineralized zones containing chalcopyrite, an indicator mineral for the gold-bearing system, were intersected in nine (9) of the drill holes. Visible gold was observed in two drill holes, FA-18-038 at a vertical depth of 325 m and drill hole FA-18-051 at a vertical depth of 380 m, making them the deepest occurrences of visible gold at that time on the Property. Other deep (500 to 650 m) holes drilled during the program (FA-18-040, FA-18-044 and FA-18-047) confirmed the depth extensions of the host lithologies (i.e., gabbro) and the mineralized shear zones. Table 10.3 presents the highlights.

Table 10.3 – Significant results of the 2018 drilling program

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/ Corridor	Target		
18-1035- 019	72.50	77.35	4.85	137.63	Naga			
18-1035- 005	58.77	64.90	6.13	48.81	Viper	High-grade shoots down to the 5130 level (~120 m depth) using a spacing of 6 to 7 m to validate the		
18-1035- 017	56.00	66.13	10.13	50.31	Chinatla	geological model and demonstrate the continuity of high-grade shoots.		
18-1035- 013	27.36	29.48	2.12	144.96	Chipotle			
18-5175- 021	104.45	110.55	6.10	144.77				
18-0990- 007	132.02	134.97	2.95	122.35	Naga	The high-grade domain in this mineralized structure shows		
18-0990- 011	104.41	112.20	7.79	54.45	Viper	continuity over 20 drill intersections.		
18-0990- 010	111.40	116.92	5.52	41.02				
18-0990- 017	106.83	108.53	1.70	134.57	Chipotle			
18-1000- 009	31.23	33.39	2.16	87.63	Fresno	The western end of the Main Gabbro zones.		
18-1030- 009	77.58	81.00	3.42	35.91	Naga Viper			
FA-18-051	501.46	506.24	4.78	3.13		A previously unknown,		
and	543.00	552.96	9.96	4.09	Area 51	approximately 200-m-wide package of favourable intermediate		
and	593.50	596.90	3.40	5.16	Alea 31	to mafic host rocks with low-grade		
and	633.00	634.44	1.44	5.92		gold mineralization throughout.		
FA-18-038	440.46	441.46	1.00	29.90	Tabasco	Interpreted to be the depth		
FA-18-038	213.39	216.38	2.99	4.70	Habanero	extension of the Tabasco Zone.		
FA-18-040	276.00	276.58	0.58	19.18	Cayenne	Extends the Cayenne Zone approximately 100 m to the northwest.		
FA-18-040	531.00	534.27	3.27	3.08	Tabasco	A new zone at depth in the Tabasco South area.		

10.3.3 2019 Drilling Program

The underground infill drilling component of the 2019 program was designed to extend known zones below the 2018/2019 bulk sample development to a depth of 350 m. It was performed from the 5150 level and from the 230-m-long exploration drift on the 5130 level (125 m depth). The completion of this exploration drift by the end of February 2019 facilitated mineral resource drilling to greater depths (approximately 350-400 m) and

along strike, including the Tabasco and Cayenne corridors, as well as the newly discovered Area 51 system.

The surface exploration drilling component expanded the footprint of the Fenelon Gold System to a strike length of 1,000 m, a width of 600 m along the margin of the Jérémie Diorite, and a vertical depth of 850 m. In addition to the known NW-SE structural trend, the campaign confirmed the Area 51 Zone as an ENE-WSW trend controlling high-grade mineralization. Table 10.4 presents the highlights.

Table 10.4 – Significant results of the 2019 drilling program

Hole ID	From (m)	To (m)	Core Lengt h (m)	Au (g/t)	Zone/ Corridor	Target
FA-19-052	477.56	576.47	98.91	2.81		The first drill hole of the 2019 surface
including	565.25	576.47	11.22	15.93		drilling program (FA-19-052) confirmed the significance of
and	493.76	500.00	6.24	8.71	Area 51	Area 51, a previously unknown corridor that had been discovered in
and	482.90	485.50	2.60	4.57		the last drill hole of the 2018 program
and	516.34	518.70	2.36	5.63		(FA-18-051), approximately 300 m west of the bulk sample area.
FA-19-059	665.70	676.74	11.04	17.58	Cayenne	The high-grade gold mineralization hosted by the Main Gabbro was also extended to a vertical depth of 600 m.
FA-19-086	595.67	643.68	48.01	22.73		A shear zone in near-surface
FA-19-103	785.00	804.00	19.00	43.47		sediments, the Tabasco Zone is extended to a vertical depth of
FA-19-094	717.45	727.15	9.70	32.18	Tabasco	850 m, showing continuity and
FA-19-099	1008.4 5	1044.0 0	35.55	4.16		increasing gold endowment with depth as it approaches more favourable host rocks, like the Jérémie Pluton or the Main Gabbro.
FA-19-052	362.50	590.30	227.80	1.46		
including	565.25	576.47	11.22	15.93		
FA-19-080	131.84	202.83	70.99	1.21		The continuity of mineralization in the
including	131.84	139.13	7.29	5.13	Area 51	Area 51 system is now suggested by several intersections that include
FA-19-059	307.83	386.15	78.32	1.02	Alea 51	wide intersections of near-surface
including	368.55	386.15	17.60	3.28		gold mineralization.
FA-19-065	321.95	513.85	191.90	0.98		
including	463.47	476.18	12.71	5.00		
FA-19-089	714.12	714.63	0.51	83.18	Geological - geophysic al target	Potential for Area 51-style gold mineralization along the approximately 4-km strike length of the Jérémie Diorite.

10.3.4 2020 Drilling Program

Six (6) drill rigs were operating on the Property for the 2020 program. Five concentrated on exploration drilling from the surface, forming widely spaced step-outs to define the footprint of the Fenelon Gold System, with a particular focus on testing Area 51. The sixth was used for closely spaced underground definition drilling in the Gabbro Zones near the mine's underground workings. Table 10.5 presents the highlights.

Table 10.5 – Significant results of the 2020 drilling program

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target		
FA-20-181	699.00	799.60	100.60	5.07		Evenende the Telegrap		
FA-20-128	844.00	900.00	56.00	4.84	Tabasco-	Expands the Tabasco- Cayenne-Area 51		
FA-20-134	1001.45	1053.15	51.70	4.06	Cayenne shear zones	mineralization on the original Fenelon Gold Property		
including	1001.45	1005.10	3.65	41.01		The relief of the results of the relief of t		
FA-20-116	617.50	676.00	58.50	1.70				
FA-20-113	585.10	667.50	82.40	1.01				
FA-20-186	99.60	174.00	74.40	1.24				
FA-20-115	510.50	549.00	38.50	2.06				
FA-20-116	661.15	676.00	14.85	5.77				
FA-20-115	510.50	517.00	6.50	9.28	Jérémie	Potentially open pit / bulk-		
19-0915- 020	411.20	417.20	6.00	7.18	Diorite-hosted Area 51	mineable intercepts		
FA-20-107	541.75	545.85	4.10	19.55				
FA-20-118	387.00	387.50	0.50	307.74				
FA-20-128	166.60	167.20	0.60	121.00				
19-0915- 025	226.90	227.60	0.70	78.21				
FA-20-160	508.00	513.35	5.35	13.03				
including	512.75	513.35	0.60	106.00	Area 51 West	Expands the Area 51 vein		
FA-20-165	275.40	281.05	5.65	6.76	Extension	network 500 m to the west		
including	276.90	278.85	1.95	18.89				
FA-20-185	73.55	94.00	20.45	5.95		Demonstrates the growing		
and	124.00	164.95	40.95	1.05	Western part of	open pit mineral resource potential, especially in		
FA-20-186	99.60	174.00	74.40	1.24	Area 51	Area 51. Near-surface intercepts in the western part of Area 51		
FA-20-219	373.60	390.00	16.40	17.79	Gabbro Zones:	Discovery drill hole for the		
including	374.70	378.00	3.30	76.98	Eastern Extension	Eastern Extension of the Gabbro Zones, located		
and	384.70	390.00	5.30	6.65		~140 m along strike to the east		

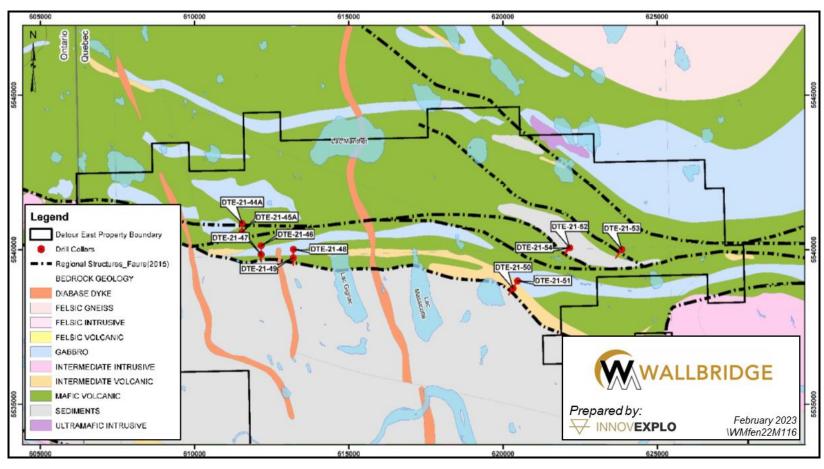
10.3.5 2021 Drilling Program (Completed by the Issuer)

During the 2021 drilling program, one (1) of the drill rigs operated underground, committed to the infill drilling program on the Tabasco-Cayenne system. The rig started drilling from the exploration drift in late September 2021. Nine (9) other rigs were dedicated to the surface expansion and definition drilling of the Fenelon Gold System and the regional drilling program on the Detour-Fenelon Gold Trend. The focus of the definition and exploration program was the infilling of the Tabasco-Cayenne Zones and the western extension of the Area 51 Zone. The regional drilling programs on the Martiniere and Casault claim blocks tested the possible extensions of the Martiniere mineralized zones and the grassroots exploration targets on Casault. Table 10.6 presents the highlights.

Table 10.6 - Significant results of the 2021 drilling program

	<u> </u>						
Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target	
FA-21-297	38.65	52.70	14.05	11.60		Expand the Area 51 near-	
including	38.65	39.15	0.50	201.00		surface footprint to the	
and	47.70	48.20	0.50	117.00		northwest.	
FA-21-228	124.50	130.20	5.70	34.99		Expand the Area 51 near-	
including	124.50	125.05	0.55	351.00		surface footprint to the southwest.	
FA-21-269	62.40	87.30	24.90	23.70		Expand the Area 51 near- surface gold mineralization	
including	84.40	87.30	2.90	196.29		into the western- southwestern portion.	
FA-21-241	277.00	324.50	47.50	3.46	Area 51		
including	295.35	297.85	2.50	52.38		Demonstrate Anna 54 high	
FA-21-247	269.00	302.70	33.70	1.04		Demonstrate Area 51 high- grade continuity near the	
including	298.70	302.70	4.00	5.31		surface, above 300 m vertical depth.	
FA-21-264A	319.40	332.90	13.50	1.93		vertical deptil.	
and	403.60	404.10	0.50	92.38			
FA-21-224	872.20	883.00	10.80	2.23		Demonstrates the gold	
including	872.20	876.20	4.00	4.12		mineralization of the Area 51 Zone below 300 m vertical depth.	
FA-21-221-W4	1067.95	1072.50	4.55	16.67			
FA-21-226-W1	1084.15	1094.50	10.35	8.57	Tabasco-		
including	1084.15	1086.80	2.65	29.94	Cayenne-	Demonstrates the depth continuity of the high metal	
FA-21-226-W1- W2	1038.00	1076.10	38.10	4.99	Contact Zone	factor of the Tabasco zone.	
including	1067.00	1075.50	8.50	15.81			

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target
MDE-21-328	805.40	842.00	36.60	2.21		A new zone at depth along
including	805.40	808.50	3.10	14.15		the Martiniere West Gabbro that is 140 m vertically
and	825.00	827.00	2.00	10.18		below the deepest historic intersections of Bug Lake South.
FA-21-305	232.00	242.00	10.00	9.00	Gabbro Zones –	Confirms the presence of strong gold mineralization
including	236.50	239.85	3.35	18.56	East Extension	in the previous discovery drill hole east of the Main Gabbro Zone.
MDE-21-326	300.00	322.50	22.50	3.68		Expands the Bug Lake
including	301.60	303.60	2.00	13.78		North, approximately 100 m down-plunge of previous
and	309.00	314.00	5.00	6.45	Martiniere Bug Lake	historical intersections.
MDE-21-330	649.50	660.00	10.50	3.83	North	Expands the zone at approximately 150 m down-
including	650.90	655.50	4.60	6.84		plunge from the previous historical intersections.
CAS-21-123	254.50	256.50	2.00	6.85	Casault	Grassroots exploration target testing interpreted structures on the airborne magnetic survey in the northern part of the Casault Property.


10.3.6 2021 Drilling Program (Detour East Block - Completed by Kirkland Lake)

Following the JV agreement of September 14, 2020 with the issuer and Kirkland Lake Gold (now Agnico) on the Detour East Block (Section 4.3). Kirkland Lake completed in 2021, a surface diamond drilling campaign on the Detour East Block focusing on testing geologic and geophysical targets in proximity to the SLDZ and on interpreted accessory structures. These targets occurred along the interpreted fault trace which crosses the northern portion of the Detour East Block. Eleven (11) drill holes (, totaling 4,671.8 m which were drilled at ten separate and distinct locations within the Detour East Block boundaries (Figure 10.5).

Significant shear or deformation zones were intersected in several drill holes confirming the presence of accessory structures to the SLDZ. The best gold result returned was from DTE-21-52 (1.79 g/t Au over 1.0 m) which indicates the presence of gold bearing structures in the area that may warrant further drilling.

Despite relatively weak gold results received to date, several favourable zones of pyrite mineralization were intersected in the sedimentary package of rocks and most importantly in the graphitic argillite units (Kirkland Lake, 2022).

Modified after Kirkland Lake (2022)

Figure 10.5 - Holes drilled by Kirkland Lake on the Detour East Block in 2021

10.3.7 2022 Drilling Program

The 2022 surface diamond drilling campaigns had up to nine (9) drill rigs in action and was completed in early december. One of the primary objectives was to delineate additional mineral resources within the known footprint of the deposit to support the 2023 MRE and future economic studies and to expand the existing mineral resource footprint laterally in directions where mineralization is open while seeking to discover new satellite zones proximal to the known footprint of the deposits.

Drilling on the Martiniere Block focused on testing the strike and depth extensions of known mineralized zones. A follow-up program of three drill holes (993 m) further tested the newly identified gold-bearing environment on the Casault Block. Unitil February 2022, the issuer carried out exploration drilling 10 km southeast of the Fenelon deposit to follow up on the Grasset gold showing, where historical intersections included 1.66 g/t Au over 33 m, with higher grade sub-intervals, such as 6.15 g/t Au over 4.04 m. Table 10.7 presents the highlights of the 2022 program.

Table 10.7 – Significant results of the 2022 drilling program

Hole ID	From (m)	To (m)	Core Lengt h (m)	Au (g/t)	Zone	Target	
FA-22-465	69.50	88.00	18.50	4.35		Demonstrate the continuity of high-grade Area 51 zone	
Including	69.50	70.00	0.50	52.36	Area 51	near the surface, above	
And	82.00	88.00	6.00	8.53		200m vertical depth.	
FA-22-444	862.00	863.00	1.00	31.33			
And	1165.0 0	1169.0 0	4.00	3.68		Expands lateralliy to the east-southeast the Area 51	
And	1176.1 0	1186.6 5	10.55	3.01	Area 51	mineral resource footprint, at vertical depths between 600 metres and 1,000 metres	
And	1194.1 0	1194.6 0	0.50	10.63		metres and 1,000 metres	
And	1249.7 5	1251.2 5	1.50	9.25	Contact Zone	Demonstrate the continuity of the Contact zone at depth towards the East-Southeast.	
FA-22-411	1281.0 0	1297.0 0	16.00	7.80	Cayenne Zone	Demonstrate the continuity of the Cayenne zone at	
Including	1284.1 0	1286.3 5	2.25	44.10	Cayenne Zone	depth towards the East- Southeast.	
FA-19-086-W1	448.50	463.10	14.60	0.86		In-fill sampling program	
Including	455.00	456.50	1.50	4.06	Contact Zone	confirms Contact zone grades.	
19-0915-004	4.45	14.10	9.65	8.91		In-fill sampling program	
Including	5.85	7.00	1.15	69.24	Tabasco	confirms Tabasco zone grades near surface.	
FA-21-386	331.70	554.55	222.85	1.01	Ripley	Demonstrates the presence	

Hole ID	From (m)	To (m)	Core Lengt h (m)	Au (g/t)	Zone	Target		
Including	399.10	411.50	12.40	3.79		of a wide envelope of pervasive, low-grade gold		
Which Includes	399.10	400.60	1.50	25.59		mineralization.		
And	503.00	506.00	3.00	10.32				
FA-21-390	415.00	421.00	6.00	0.31				
FA-21-390	447.80	654.40	206.60	0.51		Expands laterally the Ripley		
Including	447.80	457.30	9.50	1.15	Ripley	zone along strike to the		
And	537.00	543.80	6.80	2.11		southwest.		
And	610.50	615.90	5.40	2.33				
MR-22-020	538.50	544.00	5.50	4.75		Expands the Martiniere West		
including	541.00	544.00	3.00	8.70	Martiniere West	zone down-plunge by over 300 m of previous historic intersections.		
MR-22-026	357.90	363.50	5.60	12.27	Martiniere	Expands the Martiniere West		
including	360.50	362.00	1.50	42.55	West Extension	zone along strike by 400 m to the southwest.		
MR-22-029	62.65	80.00	17.35	2.50		Expands near surface		
including	68.50	72.30	3.80	8.34	Martiniere	mineralization between Martiniere West and Central zones.		
MR-22-033	464.50	466.00	1.50	20.48	Central	Demonstrates continuity of mineralization of Martiniere Central at 300 m vertical depth.		
MR-22-036	215.50	218.50	3.00	15.90				
MR-22-036	250.80	252.50	1.70	19.31	Martiniere,	Exploration drill hole demonstrates presence of		
MR-22-036	408.90	433.10	24.10	4.07	Eastern Extension	gold mineralization to the east of the known footprint.		
including	408.90	410.00	1.10	67.65		cast of the known lootpillit.		

11. SAMPLE PREPARATION, ANALYSES AND SECURITY

This item describes the issuer's sample preparation, analysis and security procedures for the 2021 and 2022 diamond drill programs on the Fenelon and Martiniere claim blocks. The QPs reviewed the quality assurance-quality control ("QA/QC") procedures and results.

The reader should refer to Pelletier and Nadeau-Benoit (2021) for details of the 2017 to 2021 drilling programs (up to September 1, 2021) on the Fenelon Block and the 2011 to 2018 drilling programs on the Martiniere Block.

While not explicitly documented in this item, the issuer's sample preparation, analysis and security procedures for the diamond drill programs completed on the Grasset and Casault blocks are similar to the approach used on Fenelon and Martiniere.

11.1 Fenelon Block

This section discusses the issuer's procedures for the diamond drilling programs from 2021 and 2022. The issuer's geology team provided the information discussed below. The QPs reviewed the QA/QC procedures and the results for those programs. The QA/QC results from September 1, 2021, until December 14, 2022, are presented below.

11.1.1 Core Handling, Sampling and Security

The drill core is boxed and sealed at the drill rigs and delivered daily by road or helicopter to the logging facility, where a Wallbridge technician takes over the core handling. Drill core is logged and sampled by experienced geologists or by a geologist-in-training under the supervision of a qualified geologist. A geologist marks the samples by placing a unique ID tag at the end of each core sample interval. Core sample lengths vary from 0.5 to 1.5 m, and sample contacts respect lithological contacts and changes in the appearance of mineralization or alteration (type and/or strength). Digital photographs of the marked and tagged core are taken for archival purposes. A Wallbridge technician saws each marked sample in half. One-half of the core is placed in a plastic bag along with a detached portion of the unique bar-coded sample tag. The other half of the core is returned to the core box, and the remaining tag portion is stapled in place. The core boxes are stockpiled or stored in outdoor core racks for future reference. Individual sample bags are placed in rice bags along with the list of samples.

According to the geologist's instructions, QA/QC samples are prepared and bagged ahead of time by Wallbridge personnel and batched at the core shack.

For the 2021 program, samples were submitted to SGS Mineral Services ("SGS"), Bureau Veritas Mineral Laboratories ("Bureau Veritas"), and AGAT Laboratories ("AGAT"). Samples submitted to Bureau Veritas were prepared and assayed at their certified facilities in North America and samples submitted to AGAT were prepared in Val-d'Or and analyzed at their Mississauga laboratory in Ontario. For the 2021 program, the laboratories were assigned to drills (i.e. all samples from core drilled by Drill #1 is sent to SGS), but also the type of program (e.g., infill sampling). Using multiple laboratories also provided an option if the turnaround time at one of the laboratories became too long. For the 2022 program, samples were submitted to SGS and Bureau Veritas.

11.1.2 Laboratory Accreditation and Certification

All three laboratories (SGS, Bureau Veritas and AGAT) have received ISO/IEC 17025 accreditation through the Standards Council of Canada ("SCC"). They are all independent of the issuer and have no interests in the Property.

11.1.3 Laboratory Preparation and Assays

11.1.3.1 SGS

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, and the entire sample is crushed to 90% passing 2 mm. Since 2019, a split of up to 1,000 g is taken using a riffle splitter and pulverized to 85% passing 75 μm.
- Samples are analyzed for gold by FA with from 50 g pulps. The method used is FAI515 (Inductively Coupled Plasma Finish) or FAA505 (Atomic Absorption Spectroscopy Finish), with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold (since 2018), a metallic sieve analysis is performed from the 1 kg split. In the case of an insufficient sample size for the analysis, the over-range test is performed by GO_FAG505, which is FA with gravimetric ("GRAV") finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets, and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portion is returned to the original sample bag.
- The remainder of the crushed samples (sample rejects) are sent to the issuer's Sudbury office for storage. Since the start of the 2021 program, the laboratory has disposed of the remainder of the crushed samples (the sample rejects) and pulverized pulps once the QA/QC review is completed and the pulp samples have been selected, pulled and shipped for the external check analysis (normally, pulps are discarded after 90 days, and rejects after 60 days).

11.1.3.2 Bureau Veritas

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried and weighed (WGHT), and the entire sample is crushed to 90% passing 2 mm (CRU90). A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 85% passing 75 μm (PUL85).
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is FA450, with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold, a metallic sieve analysis is performed from the 1 kg split (FS652). In the case of an insufficient sample size for the analysis, the over-range test is performed by FA550-Au, which is FA with GRAV finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets, and the official certificate (sealed and signed) as a PDF.

- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions are returned to the original sample bags.
- The laboratory disposes of the remainder of the crushed samples (the sample rejects) and pulverized pulps once QA/QC review is completed and the pulp samples have been selected, pulled and shipped for the external check analysis (normally, pulps are disposed of after 90 days, and rejects after 60 days).

11.1.3.3 AGAT

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried and weighed, and the entire sample is crushed to 90% passing 2 mm. A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 85% passing 75 µm.
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is 202-551, with a reporting range of 0.002 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold, a metallic sieve analysis is performed from the 1 kg split (202-121). In the case of an insufficient sample size for the analysis, the over-range test is performed by 202-564, which is FA with GRAV finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets, and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions are returned to the original sample bags.
- The laboratory disposes of the remainder of the crushed samples (the sample rejects) and pulverized pulps once the QA/QC review is completed and the pulp samples have been selected, pulled and shipped for the external check analysis (normally, pulps are disposed of after 90 days, and rejects after 60 days)

11.1.4 Quality Assurance and Quality Control

The issuer's QA/QC program for the drill core includes the insertion of blanks and standards in the core sample stream. About 10% of the samples were control samples in the sampling and assaying process. One (1) standard and one (1) blank sample of barren rock were added to each group of 20 samples sent for FA analysis as an analytical check for laboratory batches.

Duplicates were not part of the issuer's QA/QC program, although a check assaying (5%) on pulps is performed using a third laboratory to validate the assays from the two main laboratories.

The issuer's geologists were responsible for the QA/QC program and database compilation. Upon receiving the analytical results, they extracted the results for blanks and standards to compare against the expected values. If QA/QC acceptability was achieved for the analytical batch, the data were entered into the project database; if not, the batch (or portion of it) was retested.

11.1.4.1 Certified reference materials (standards)

Accuracy is monitored by inserting one (1) CRM sample for every 20 samples submitted. The standards were obtained from OREAS (based in Melbourne, Australia) and gradually replaced the previously used ones. The definition of a QC failure is when an assay result for a standard fall outside three standard deviations ("3SD") (using standard deviation from the OREAS certificate value).

A total of 8,809 results for standards were received from September 1, 2021, to December 14, 2022 (from the 2021 and 2022 programs). Wallbridge used four (4) different CRMs ranging from 0.542 g/t Au to 8.67 g/t Au. A total of 523 standards returned results outside 3SD for an overall success rate of 94.0% (Table 11.1 and Table 11.2 document results for Bureau Veritas and SGS). In the event of a result outside 3SD (outliers and gross outliers), the issuer took actions to explain the cause of the abnormal value (e.g., Entry/submission error by the logging geologist or technician, sample swap by the laboratory). When no satisfactory explanation could be found, the failed sample sequence was re-run (about 5% of the failed samples).

Overall, the mean bias results and the comparison of the standard deviations ("SD"); between the SD from the OREAS certificates and the SD from the datasets suggest erratic results. It is important to note that the statistics on the standard results include gross outliers, which are mainly caused by human error (wrong CRM submitted to the laboratory). See the example in Figure 11.1 (results by SGS of OREAS 231 from January 1, 2022, to December 14, 2022). When removing those gross outliers, the precision and accuracy comply with standard industry criteria.

Table 11.1 – Results of standards received from September 1, 2021, to December 31, 2021 (SGS and Bureau Veritas)

CRM	Lab	Method	CRM Value (g/t Au)	SD (OREAS)	Qty	>1SD	>3SD	Mean	SD (Lab.)	Mean Bias (%)
OREAS 231	sgs	FAA505	0.542	0.015	282	119	17	0.61	0.4085	12.0109
OREAS 238	sgs	FAA505	3.03	0.08	279	124	13	2.96	0.3109	-2.3393
OREAS 231	BV	FA450	0.542	0.015	161	56	6	0.54	0.0183	-0.012
OREAS 238	BV	FA450	3.03	0.08	166	43	3	3.02	0.2107	-0.4577

Standards inserted more than 15 times per laboratory during that period are presented in the table.

Table 11.2 – Results of standards received from January 1, 2022, to December 14, 2022 (SGS and Bureau Veritas)

CRM	Lab.	Method	CRM Value (g/t Au)	SD (OREAS)	Qty	>1SD	>3SD	Mean	SD (Lab.)	Mean Bias (%)
OREAS 231	BV	FA450	0.542	0.015	775	335	88	0.6	0.4213	11.4401
OREAS 238	BV	FA450	3.03	0.08	765	263	39	2.97	0.5138	-1.9857
OREAS 231	SG S	FAA50 5	0.542	0.015	631	249	28	0.59	0.373	9.3419
OREAS 238	SG S	FAA50 5	3.03	0.08	618	285	21	2.93	0.362	-3.1858
OREAS 231	SG S	FAI515	0.542	0.015	1773	729	97	0.58	0.4536	6.2052
OREAS 238	SG S	FAI515	3.03	0.08	1632	718	114	2.98	0.4174	-1.6508
OREAS 238B	SG S	FAI515	3.08	0.085	107	39	2	3.06	0.1039	-0.6515
OREAS 242	SG S	FAI515	8.67	0.215	1569	711	87	8.53	1.1372	-1.5676

Standards inserted more than 15 times per laboratory during that period are presented in the table.

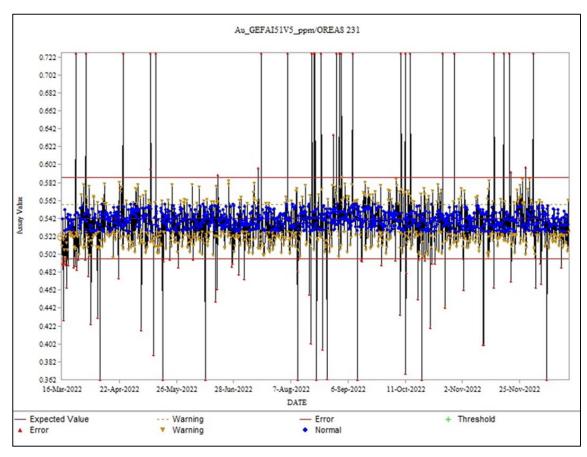


Figure 11.1 – Chart detailing the results by SGS (ICP finish) of OREAS 231 from January 1, 2022, to December 14, 2022

11.1.4.2 Blank samples

Contamination is monitored by the routine insertion of one (1) barren sample (blank) for every 20 samples submitted. The blank goes through the same sample preparation and analytical procedures as the core samples. When visible gold is observed, the insertion rate of blanks is increased to one for every 10 samples.

A total of 7,699 results for blanks were received from September 1, 2021, to December 14, 2022 (from the 2021 and 2022 programs). The blanks were derived from barren rock (crushed quartzite or decorative pink quartz).

The issuer's QA/QC protocol stipulates that if any blank yields a gold value above five times the detection limit ("5DL"), then two (2) to four (4) samples on either side of the blank should be re-analyzed to determine whether smearing had occurred while processing the sampling sequence.

A total of 60 samples (0.78%) returned grades higher than 5DL (Table 11.3).

The QPs are of the opinion that the QC results for the blanks used during the issuer's drilling programs are reliable and valid.

Table 11.3 – Results of blanks received from September 1, 2021, to December 14, 2022

Laboratory	Method	Method Acceptance Iimit 5DL (g/t Au)		Quantity failed	% passing QC	
SGS	FA	0.025	6754	53	99.22%	
SGS	Metallic screen FA	0.05	58	1	98.28%	
BV	FA	0.025	729	3	99.59%	
BV	Metallic screen FA	0.01	8	0	100.00%	
AGAT	FA	0.025	150	3	98.00%	
			7699	60	99.22%	

11.1.4.3 **Duplicate**

The issuer's QA/QC procedure did not include duplicate assays.

11.1.4.4 External Check

The issuer submits external check assays to a different lab (~5%) using pulp duplicates and crush duplicates. During the period between September 1, 2021 to December 14, 2022, results from the umpire lab were received but were not compiled and reviewed by the issuer.

11.1.4.5 Conclusions on QA/QC for the Fenelon Block

The statistical analysis of the QA/QC data did not identify any significant analytical issues. The QPs are of the opinion that the sample preparation, analysis, QA/QC and security protocols used during the drilling programs on the Fenelon Block (Fenelon deposit) follow generally accepted industry standards and that the data is valid and of sufficient quality to be used for mineral resource estimation purposes.

11.2 Martiniere Block

This section discusses the issuer's sample preparation, analysis and security procedures for its 2021 and 2022 drilling programs on the Martiniere Block (Martiniere deposit). The QPs reviewed the QA/QC procedures and the results for the 2021 and 2022 programs. The QA/QC results from September 1, 2021, until December 14, 2022, are presented below. The QA/QC results were provided by the issuer.

11.2.1 Core Handling, Sampling and Security

For the 2021 and 2022 programs, the drill core is boxed and sealed at the drill rigs and delivered daily by road or helicopter to the logging facility, where a Wallbridge technician takes over the core handling. Drill core is logged and sampled by experienced geologists or by a geologist-in-training under the supervision of a qualified geologist. A geologist

marks the samples by placing a unique ID tag at the end of each core sample interval. Core sample lengths vary from 0.5 to 1.5 m, and sample contacts respect lithological contacts and changes in the appearance of mineralization or alteration (type and/or strength). Digital photographs of the marked and tagged core are taken for archival purposes. A Wallbridge technician saws each marked sample in half. One-half of the core is placed in a plastic bag along with a detached portion of the unique bar-coded sample tag. The other half of the core is returned to the core box, and the remaining tag portion is stapled in place. The core boxes are stockpiled or stored in outdoor core racks for future reference. Individual sample bags are placed in rice bags along with the list of samples.

According to the geologist's instructions, QA/QC samples are prepared and bagged ahead of time by Wallbridge personnel and batched at the core shack.

For the 2021 program, samples were submitted to Bureau Veritas. Samples submitted to Bureau Veritas were prepared and assayed at their certified facilities in North America. For the 2022 program, samples were submitted to SGS and Bureau Veritas.

11.2.2 Laboratory Accreditation and Certification

Both laboratories (SGS and Bureau Veritas) have received ISO/IEC 17025 accreditation through the SCC. They are independent of the issuer and have no interests in the Property.

11.2.3 Laboratory Preparation and Assays

11.2.3.1 SGS

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, and the entire sample is crushed to 90% passing 2 mm. Since the 2019 program, a split of up to 1,000 g is taken using a riffle splitter and pulverized to 85% passing 75 μm.
- Samples are analyzed for gold by FA from 50 g pulps. The method used is FAI515 (Inductively Coupled Plasma Finish) or FAA505 (Atomic Absorption Spectroscopy Finish), with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold (since 2018), a metallic sieve analysis is performed from the 1 kg split. In the case of an insufficient sample size for the analysis, the over-range test is performed by GO_FAG505, which is FA with gravimetric ("GRAV") finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets, and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portion is returned to the original sample bag.
- The remainder of the crushed samples (the sample rejects) are sent to the issuer's Sudbury office for storage. Since the start of the 2021 program, the laboratory has disposed of the remainder of the crushed samples (the sample rejects) and pulverized pulps once the QA/QC review is completed and pulp samples have been

selected, pulled and shipped for the external check analysis (normally, pulps are discarded after 90 days and rejects after 60 days).

11.2.3.2 Bureau Veritas

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried and weighed (WGHT), and the entire sample is crushed to 90% passing 2 mm (CRU90). A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 85% passing 75 μm (PUL85).
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is FA450, with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold, a metallic sieve analysis is performed from the 1 kg split (FS652). In the case of an insufficient sample size for the analysis, the over-range test is performed by FA550-Au, which is FA with GRAV finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets, and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions are returned to the original sample bags.
- The remainder of the crushed samples (the sample rejects) and pulverized pulps are disposed of by the laboratory once QA/QC review is completed and pulp samples have been selected, pulled and shipped for the external check analysis (normally, pulps are disposed of after 90 days and rejects after 60 days)

11.2.4 Quality Assurance and Quality Control

The issuer's QA/QC program for the drill core includes the insertion of blanks and standards in the core sample stream. About 10% of the samples were control samples in the sampling and assaying process. One (1) standard and one (1) blank sample of barren rock were added to each group of 20 samples sent for FA analysis as an analytical check for laboratory batches.

Duplicates were not part of the issuer's QA/QC program, although a check assaying (5%) on pulps is performed using a third laboratory to validate the assays from the two main laboratories.

The issuer's geologists were responsible for the QA/QC program and database compilation. Upon receiving the analytical results, they extracted the results for blanks and standards to compare against the expected values. If QA/QC acceptability was achieved for the analytical batch, the data were entered into the project database; if not, the batch was retested.

11.2.4.1 Certified reference materials (standards)

Accuracy is monitored by inserting one (1) CRM for every 20 samples submitted. The standards were obtained from OREAS (based in Melbourne, Australia) and gradually replaced the previously used ones. The definition of a QC failure is when an assay result for a standard fall outside 3SD (using standard deviation from the OREAS certificate value).

A total of 8,905 results for standards were received from September 1, 2021, to December 14, 2022 (from the 2021 and 2022 programs). Wallbridge used four (4) different CRMs ranging from 0.542 g/t Au to 8.67 g/t Au. A total of 524 standards returned results outside 3SD for an overall success rate of 94.1% (Table 11.4 document results for Bureau Veritas and SGS). In the event of a result outside 3SD (outliers and gross outliers), the issuer took actions to explain the cause of the abnormal value (e.g., Entry/submission error by the logging geologist or technician, sample swap by the laboratory). When no satisfactory explanation could be found, the failed sample sequence was re-run (about 5% of the failed samples).

Overall, the mean bias results and the comparison of the standard deviations ("SD"); between the SD from the OREAS certificates and the SD from the datasets suggest erratic results. It is important to note that the statistics on the standard results include gross outliers, which are mainly caused by human error (wrong CRM submitted to the laboratory). See the example in Figure 11.1 (results by Bureau Veritas of OREAS 238 from September 1, 2022, to December 14, 2022). When removing those gross outliers, the precision and accuracy comply with standard industry criteria.

Table 11.4 – Results of standards received from September 1, 2021, to December 14, 2022 (SGS and Bureau Veritas)

CRM	Lab.	Method	CRM Value (g/t Au)	SD (OREAS)	Qty	>1SD	>3SD	Mean	SD (Lab.)	Mean Bias (%)
OREAS 231	BV	FA450	0.542	0.015	936	391	94	0.59	0.3843	9.2651
OREAS 238	BV	FA450	3.03	0.08	931	306	42	2.98	0.4744	-1.7132
OREAS 242	BV	FA450	8.67	0.215	183	87	9	8.42	1.064	-2.9315
OREAS 231	SGS	FAA505	0.542	0.015	913	368	45	0.60	0.3841	10.1663
OREAS 238	SGS	FAA505	3.03	0.08	897	409	34			
OREAS 231	SGS	FAI515	0.542	0.015	1755	720	97	0.58	0.4559	6.2931
OREAS 238	SGS	FAI515	3.03	0.08	1624	715	114	2.98	0.4184	-1.6563
OREAS 238B	SGS	FAI515	3.08	0.085	97	37	2	3.06	0.1063	-0.6176
OREAS 242	sgs	FAI515	8.67	0.215	1551	711	87	8.53	1.1372	-1.5676

Standards inserted more than 15 times per laboratory during that period are presented in the table

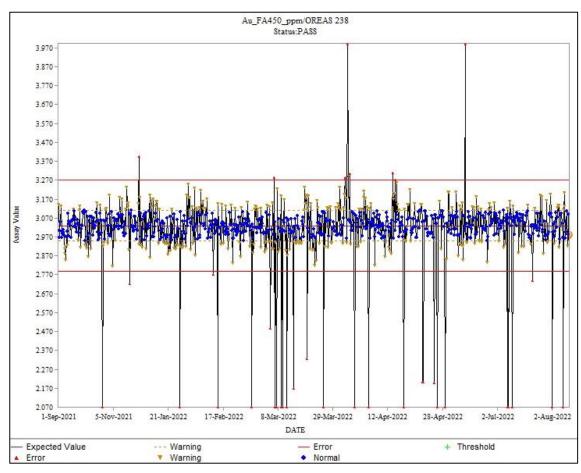


Figure 11.2 – Chart detailing the results by Bureau Veritas of OREAS 238 from September 1, 2021 to December 14, 2022

11.2.4.2 Blank samples

Contamination is monitored by the routine insertion of one (1) barren sample (blank) for every 20 samples submitted. Blanks go through the same sample preparation and analytical procedures as the core samples. When visible gold is observed, the insertion rate of blanks is increased to one for every 10 samples.

A total of 1,220 results for blanks were received from September 1, 2021, to December 14, 2022 (from the 2021 and 2022 programs). The blanks were derived from barren rock (crushed quartzite or decorative pink quartz).

The issuer's QA/QC protocol stipulates that if any blank yields a gold value above 5DL, then two (2) to four (4) samples on either side of the blank should be re-analyzed to determine whether smearing had occurred while processing the sampling sequence.

Three (3) samples (0.25%) returned grades higher than 5DL (Table 11.2).

The QPs are of the opinion that the QC results for the blanks used during the issuer's drilling programs are reliable and valid.

Table 11.5 – Results of blanks received from September 1, 2021, to December 14, 2022

Laboratory	Method	Acceptance limit 5DL (g/t Au)	Quantity inserted	Quantity failed	% passing QC
SGS	FA	0.025	149	0	100.00%
SGS	Metallic screen FA	0.05	1	0	100.00%
BV	FA	0.025	1062	3	99.72%
BV	Metallic screen FA	0.01	8	0	100.00%
			1220	3	99.75%

11.2.4.3 Duplicate

The issuer's QA/QC procedure did not include duplicate assays.

11.2.4.4 External Check

Wallbridge submits external check assays to a different lab (~5%) using pulp duplicates and crush duplicates. A total of 71 results from the umpire lab were received, reviewed and compiled by the issuer between September 1, 2021, and December 14, 2022. Although it is difficult to evaluate laboratory performance with so few results, Figure 11.3 shows pulp duplicate results using SGS as the umpire lab (Bureau Veritas was the original laboratory). Low-grade samples yielded more results consistent with the original results, but the more variable results for higher-grade samples reflect a nugget effect, which is common for this type of deposit.

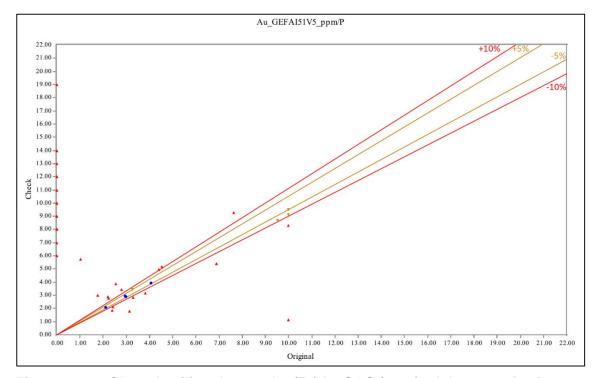


Figure 11.3 – Chart detailing the results (53) by SGS (umpire laboratory for Bureau Veritas original assay results) of duplicates taken at the pulverising stage (pulp duplicates) received between September 1, 2021 to December 14, 2022

11.2.5 Conclusions on QA/QC for the Martiniere Block

The statistical analysis of the QA/QC data did not identify any significant analytical issues. The QPs are of the opinion that the sample preparation, analysis, QA/QC and security protocols used during the drilling programs on the Martiniere Block (Martiniere deposit) follow generally accepted industry standards and that the data is valid and of sufficient quality to be used for mineral resource estimation purposes.

12. DATA VERIFICATION

This item covers the data verification done by the QPs on the diamond drill hole databases used for the Detour-Fenelon Gold Trend 2021 MRE. Data verification also included a site visit from each QPs July 5, 2022 for Carl Pelletier and on November 3, 2022 for Vincent Nadeau-Benoit.

12.1 Drill Hole Database

Two databases were validated for the 2023 MRE: one for the Fenelon deposit and one for the Martiniere deposit (the "2023 MRE databases").

Historical work subject to verification consisted of the drill holes used for the 2021 MRE (Pelletier and Nadeau-Benoit, 2021). Basic cross-check routines were performed between the current ODV Databases and the previously validated database for the 2021 MRE, i.e., collars, downhole surveys, and assay fields. Apart from recent drill holes added to the databases and sampling of previously unsampled intervals (Fenelon deposit database only), the QPs did not find any other discrepancies with the current database.

The QPs had access to the assay certificates for all historical and current drill holes in the 2023 MRE databases. All assays were verified for selected drill holes from the latest drilling or sampling programs, i.e., 5% of the 2020 and 2021 programs and 5% of the newly sampled intervals on older drill holes (sampled in 2021 or 2022 but drilled before the 2021 MRE). The assays recorded in the 2023 MRE databases were compared to the original certificates (received directly from the laboratories). No major errors or discrepancies were found. The electronic transfer of the laboratory results via e-mail, followed by the electronic transfer directly into the databases by Wallbridge's staff, allowed for immediate error detection and prevented any typing errors.

The surface drill hole collars were surveyed using an RTK system or a Total Station unit. Using raw survey files, the collar survey information was verified for 5% of the drill holes from the latest drilling programs. No discrepancies were found.

Downhole surveys (mainly Gyro and Multi-shot surveys) were conducted on the majority of surface and underground holes drilled by the issuer. The downhole survey information was verified by comparing the data for 5% of the holes from the latest drilling programs to the downhole data recorded in the database. No major discrepancies were found.

12.2 Site Visit

The QP, Vincent Nadeau-Benoit, conducted a site visit November 3, 2022. He used the access road to the Fenelon camp to drive onto the Property. The site visit included a review of the general access route, a visual check of the camp (Figure 12.1), and an assessment of the overall condition of the site. He also had discussions with the issuer's geologists about the drilling program on the Detour-Fenelon Gold Trend. At the time of the site visit, six (6) rigs were active.

Core logging and sampling procedures were also discussed with the rest of the team during the site visit. These discussions covered collar locations, drilling protocols, downhole surveys, logging protocols, oriented core and structural measurements, sampling protocols, QA/QC protocols, and density measurement procedures. Mr. Nadeau-Benoit is of the opinion that the site visit and validation exercises demonstrated the validity of

the protocols in place and their use during the current drilling program on the Fenelon claim block.

Mr. Nadeau-Benoit also examined core intervals from six (6) drill holes from the ongoing exploration drilling program and some witness core from the core library. All core boxes were labelled and properly stored; mainly on core racks with recent drill holes from the ongoing program on pallets. Sample tags are present in the boxes, and it was possible to validate sample numbers and confirm the presence of mineralization in the reference half-core samples from mineralized zones. The six (6) drill holes were MR-22-020, MR-22-029, FA-21-386, FA-22-439, FA-22-456 and FA-22-537. The intervals included mineralized graphitic argillite, sheared and mineralized diorite, mineralized quartz veins and veinlets, mineralized intervals in gabbro with sulphides and silicification and various metasedimentary and intrusive rocks. Figure 12.1 shows an example of sulphide-rich banding of the Martiniere West Trend and an example of quartz stringers associated with traces sulphides and visible gold of the Ripley Mineralized Zones.

The QP, Carl Pelletier, visited the Property on July 5, 2022. His main focus was to examine the underground ramp and the drift in Area 51 before the issuer stopped pumping and let the underground openings flood. The QP confirmed the presence of small veins with good continuity in the Interstellar 3 Zone (Figure 12.1).

Mr. Nadeau-Benoit had performed field checks on collar locations (using a handheld GPS) during a previous site visit from August 16 to August 17, 2021. The QP also completed independent re-sampling of mineralized intervals in the Area 51 and Tabasco zones (Table 12.1), with low-grade samples yielding results that are consistent with the original results but higher-grade samples yielding more variable results (although gold values remain high). This indicates a nugget effect, which is common for this type of deposit. Past re-sampling of mineralized intervals in the Gabbro Zones (Fenelon deposit) by independent QPs (as defined in NI 43-101) was done for the purpose of the technical report by Richard et al. (2017).


Table 12.1 – Results of the independent re-sampling of material from the Fenelon deposit

Drill Hole Information		Original (Wallbridge)		Field Dupli				
Hole ID	From	То	Sample Number	Au (ppm)	IE Sample Number	Au (AA26E) (ppm)	Au (GRA22) (ppm)	Rock (Zone)
FA-21-221-W2	1036.75	1037.75	D00103947	0.330	W035460	0.25		S3 (A51)
FA-21-221-W2	1037.75	1039.00	D00103948	0.244	W035461	0.62		S3 (A51)
FA-21-221-W2	1039.00	1040.45	D00103949	1.069	W035462	1.10		S3 (A51)
FA-21-221-W2	1040.45	1041.20	D00103950	6.605	W035463	4.95		S3 (A51)
FA-21-221-W2	1041.20	1042.00	D00103951	11.600	W035464	10.85	11.60	S3 (A51)
FA-20-119	904.60	905.25	B00410884	14.810	W035465	10.35	9.97	S6G (Tab)
FA-20-119	905.25	906.00	B00410886	4.820	W035466	8.78	7.20	S6G (Tab)
FA-20-119	906.00	906.90	B00410887	0.260	W035467	0.37		S6G (Tab)
FA-20-119	906.90	907.50	B00410888	7.600	W035468	6.46	7.07	S6G (Tab)
FA-20-119	907.50	909.00	B00410889	0.680	W035469	0.31		S6G (Tab)
FA-20-119	909.00	910.40	B00410890	0.248	W035470	0.84		S6G (Tab)

12.3 Comments

The QPs had full access to all data required for the data verification. The QPs are of the opinion that their data verification process has demonstrated the validity of the project data and protocols. The QPs consider the databases valid and of sufficient quality to be used for the mineral resource estimates herein.

A: Core logging in action - B: Core yard - C: Underground exposure of the veins associated to the Interstellar 3 mineralized zone - D: Mineralized quartz veinlet in the Mafic phase of the diorite of the Ripley (drill hole: FA-22-456 at a depth of around 196.0 m) - E: Sulphide-rich banding of the Martiniere West Trend (drill hole: MR-22-020 at a depth of 343.0 to 346.0 m)

Figure 12.1 - QPs site visits to the Fenelon Camp

13. MINERAL PROCESSING AND METALLURGICAL TESTING

This item describes the mineral processing and metallurgical testing carried out on the Gabbro Zones in 2018 and 2019, the Tabasco and Area 51 zones (Fenelon deposit) in 2020 and 2021, and the Martiniere deposit from 2012 to 2015.

13.1 Fenelon Deposit

This section was taken and updated from the previous technical report on the Property (Pelletier and Nadeau-Benoit, 2021).

13.1.1 Treatment and results of the 2018 and 2019 bulk samples (Gabbro Zones)

This section summarizes the treatment and results of the 2018 and 2019 bulk samples mined from the Gabbro Zones. The samples were treated at the Camflo Mill, owned at the time by Monarques Gold Corporation (Jolicoeur, 2020) but now the property of Yamana Gold Inc. (Yamana website, accessed March 5, 2021).

References for the metallurgical testwork are the studies carried out by CRM for Fairstar Exploration Inc. (Fairstar press release of November 13, 1997) and Laboratoire LTM Inc. (St-Jean, 2004).

The 2018 and 2019 bulk samples were divided into five (5) batches from September 11, 2018, to April 18, 2019. During the first 2018 batch, 2,930 t from the historical surface low-grade stockpile were included and processed as part of the bulk sample. A total of 36,160 dry metric tons were treated. The average head grade, including the 767 ounces of gold in tails, was 17.37 g/t Au with an overall recovery of 96.20%.

Silver was not recorded for the batches.

Table 13.1 presents the results for each batch of the 2018 and 2019 bulk samples. Table 13.2 shows the average recovery rate per stage and leach time per circuit.

Table 13.1 – Summary of the results for the 2018 and 2019 bulk samples

Period	Dry metric tons	Gold ounces	Gold ounces in tails	Total gold ounces	Recovery (%)	Head grade (g/t Au)
September 11-18, 2018	7,075	1,607	399	2,006	80.12	8.82
November 20-27, 2018	6,405	2,908	168	3,076	94.53	14.94
December 28 to January 11, 2019	6,692	3,962	25	3,988	99.37	18.53
January 24, to February 3, 2019	5,652	5,777	16	5,793	99.73	31.88
March 31 to April 18, 2019	10,336	5,035	151	5,186	97.09	15.60
Gold recovery from slag treatement ¹	-	144	8	152	95.00	0.13
Total/Average	36,160	19,433	767	20,201	96.20	17.37

¹⁾ Slag treatment at Sipi Smelter, Elk Grove Village (Illinois, United States of America)

Table 13.2 – Average recovery per stage and average leach time

Stage or average leach time (h)	Average recovery (%)
Grinding	85
Circuit 1: 9.2 h	10
Circuit 2: 27.6 h	0.7
Circuit 3:18.4 h	0.5
Total (55.2 h)	96.2

13.1.1.1 Camflo Process Description

Crushing Circuit

The crushing circuit begins with a 36" X 48" jaw crusher and a primary 4-1/4 standard cone crusher in an open circuit. It is then followed by a secondary 4-1/4 sort head cone crusher in a closed circuit to produce a final product passing a $\frac{3}{4}$ x $\frac{3}{4}$ " screen. The crushing capacity is in the range of 125 tph.

Grinding Circuit

The ore is fed at the rate of 30-35 tph, with the required quick lime (average rate of 2.43 kg/t) through an 8' X 12' rod mill in an open circuit. The rod mill discharge is then mixed with the discharge from the two (2) 8' X 15' and 9' X 12' ball mills. It is then classified through a single 20" cyclone. The underflow is used to feed both ball mills at \pm 200%

circulating load, and the overflow is the final grinding product. The entire power consumption of the grinding mills is 452 kWh.

The cyanide requirement of 1.524 kg per tonne is added to the final grinding product prior to thickening.

Thickening, Leaching and Filtration

The cyclone overflow feeds three (3) 36'-diameter thickeners. The underflows from the thickeners feed the leaching circuit. The overflows become the pregnant solution, feeding the bags clarifier in the Merrill-Crowe process.

The first leaching and filtration circuit consists of three (3) leach tanks of 28' X 28' and two (2) 11'-6" X 16' drum filters. The second circuit consists of similar equipment: two (2) leach tanks and two (2) drum filters. Finally, the tailings circuit consists of one (1) leach tank and two (2) drum filters (same dimensions as the first circuit).

All the recovered filtration solution is pumped to the thickeners, consisting of part of the pregnant solution.

Due to the poor performance of the first batch, the process flow sheet was modified for the other four batches. The leaching time was increased from 45 h to 55 h.

Modifications to the leaching circuit

As described above, the first batch was processed as the normal flow sheet with regards to leaching. Due to poor performance, the process flow sheet was modified for the other four (4) batches.

The modified process consists of one (1) leach tank for the first stage, three (3) for the second and two (2) leach tanks for the last leach circuit.

This change lowered the gold concentration in the solution, allowing soluble gold to be recovered earlier in the process.

13.1.1.2 Gold Recovery

Gold was recovered using a Merrill-Crowe circuit. The process consists of a solution bags clarifier, followed by a Merrill-Crowe tower, followed by the addition of zinc dust and lead acetate, ahead of two (2) Perrins presses. This process produces a gold concentrate of \pm 30%. This concentrate is then melted in an induction furnace to produce doré of \pm 80% gold with \pm 17% silver and \pm 3% impurities.

Modifications to the Merrill-Crowe Circuit

To reduce the gold charge in the circuit and potentially improve the drum filter wash, the precipitation tonnage at the Perrins Presses was increased by \pm 30%.

13.1.1.3 Reprocessing the refining slag

The slag produced by the induction furnace was re-melted in a Wabi fuel furnace to recover additional gold and silver. The slag from the Wabi was sent to the Sipi Smelter, (Elk Grove Village, Illinois, USA) for a final gold and silver recovery.

13.1.2 Metallurgical testwork on Tabasco-Cayenne and Area 51 zones

13.1.2.1 2020 Metallurgical testwork

In 2020, preliminary metallurgical testwork was completed on the Tabasco and Area 51 zones (SGS 2020 internal report). The testwork was carried out on three composites (low-grade material from the Area 51 zones, low-grade material from the Tabasco zones and high-grade material from the Tabasco zones) and was prepared from assay lab rejects from 14 individual drill holes and performed by SGS laboratories. The three composites were tested for their amenability to gravity separation and cyanidation under varying grind sizes and conditions. Table 13.3 summarizes the results from the 2020 SGS testing.

Table 13.3 – Results of SGS' 2020 metallurgical testwork (Area 51 and Tabasco zones)

Sample	Details	Feed Size	Gravity %	Total Recovery	H	Head Grad	е
Sample	Details	P80, µm Au		% Au	Calc.	Grav+C N	
	Whole Ore Leach	47		98.9	25.8		25.7
Tabasco-	Whole Ore & CIP	46		99	24.4		
HG	Gravity & Cyanidation	59	84.1	99.1	4.47	28.1	
Comp.	Gravity & Cyanidation	69	40.5	98.8	14.2	23.9	
[Gravity & Cyanidation	97	36.1	98.5	16.8	26.2	
	Whole Ore Leach	45		96.8	3.17		3.23
Tabasco-	Whole Ore & CIP	45		95.8	2.16		
LG	Gravity & Cyanidation	56	64.2	96.9	0.93	2.6	
Comp.	Gravity & Cyanidation	69	29.8	96	1.66	2.36	
	Gravity & Cyanidation	91	48.5	94.6	1.1	2.13	
	Whole Ore Leach	51		97.6	1.25		0.84
Area 51-	Whole Ore & CIP	51		96.6	1.04		
LG	Gravity & Cyanidation	53	72.8	96.4	0.23	0.084	
Comp.	Gravity & Cyanidation	68	78.1	97.1	0.22	1	
	Gravity & Cyanidation	102	66.5	95.3	0.22	0.66	

13.1.2.2 2021 Metallurgical test work

In 2021, a comminution and metallurgical testwork was completed on two specific ore zones: Tabasco (TBC) and Area 51 (A51) (SGS 2021 internal report). Several drill core samples were sent to SGS laboratories and composited to make 15 variability samples, 8 from the TBC ore zone (samples VAR-TBC-01 to VAR-TBC-08) and 7 from A51 ore zone (samples VAR-A51-09 to VAR-A51-15). The variability samples were used for comminution and metallurgical testwork. The testwork was carried out on two metallurgical master composites (TBC-Master 2021 and A51-Master 2021).

The main objective of the metallurgical test program was to evaluate the response of the TBC and Area 51 samples to a flowsheet that included gravity separation, flotation, and cyanidation of the flotation concentrate. The flotation testwork included grind size evaluation and reagent optimization tests. Cleaner flotation tests were also completed to examine the recovery and grade associated with producing a cleaner concentrate.

The direct gold head grades for the TBC variability samples ranged from 1.30 g/t (VAR-TBC-08) to 9.78 g/t (VAR-TBC-04) and averaged 4.68 g/t, which compared well to the average calculated gold head from the test program, 4.92 g/t. The average silver and sulphur grades were 2.13 g/t and 1.10%, respectively. The direct gold head grades for the Area 51 variability samples ranged from 1.10 g/t (VAR-A51_15) to 7.53 g/t (VAR-A51-012) and averaged 2.76 g/t, slightly lower than the average calculated gold head from the test program, 3.25 g/t. The Area 51 samples contained 1.18 g/t Ag and 0.49% S on average.

The comminution program consisted of SAG Mill Comminution (SMC), Bond rod mill (RWI), Bond ball mill (BWI), and abrasion grindability tests (Ai). These test results are summarized in Table 13.4.

Table 13.4 Comminution Results Summary of SGS' 2021 metallurgical testwork (Area 51 and Tabasco Zones)

Sample	Relative Density	Axb	t _a ¹	SCSE	RWI kWh/t	BWI kWh/t	AI g
VAR-TBC-02	2.75	22.0	0.25	13.5	16.9	14.6	0.252
VAR-TBC-03						14.2	0.279
VAR-TBC-04	2.79	26.6	0.28	12.3		14.1	0.290
VAR-TBC-06						14.6	0.333
VAR-TBC-08	2.78	30.7	0.37	11.5	15.6	14.1	0.384
VAR-A51-10						15.1	0.431
VAR-A51-11	2.81	26.5	0.24	12.4		16.2	0.424
VAR-A51-14	2.76	23.0	0.22	13.2	16.2	13.4	0.305
VAR-A51-15	2.75	27.5	0.21	12.0		14.3	0.382

¹The t_a value reported as part of the SMC procedure in an estimate

The samples were characterized as hard with respect to resistance to impact breakage, with A x b values ranging from 23 to 31. The RWI values ranged from 15.6 kWh/t to 16.9 kWh/t, which placed them in the moderately hard to hard range of hardness compared to the SGS database. The BWI values ranged from 13.4 kWh/t to 16.2 kWh/t, which placed the majority of the samples in the medium range of hardness compared to the SGS database. The Abrasion Indices (AI) varied from 0.252 g up to 0.431 g. The tests were classified as medium to moderately abrasive when compared to the SGS database.

The main objective of the metallurgical test program was to evaluate the response of the TBC and Area 51 samples to a flowsheet that included gravity separation, flotation, and cyanidation of the flotation concentrate. The flotation testwork included grind size evaluation and reagent optimization tests. Cleaner flotation tests were also completed to examine the recovery and grade associated with producing a cleaner concentrate. The

15 variability samples received were used for variability tests that determined the response of each sample to the following flowsheet:

• Gravity Separation + Rougher Flotation + Cyanidation of unground flotation concentrate The average gold results for the TBC and Area 51 samples are presented in Table 13.5.

Table 13.5 Results Summary of SGS' 2021 metallurgical testwork (Area 51 and Tabasco Zones)

Sample	Gravity Au %	Flotation Au %	Gravity+Flot ation Au %	Cyanidation Au %	O'AII Recovery Au %^
TBC-Master 2021	66.5	89.0	96.3	95.4	94.9
TBC-Variability Samples (8)	38.1	90.7	94.2	95.4	91.7
A51-Master 2021	84.3	87.4	98.0	95.4	97.4
A51-Variability Samples (7)	52.6	93.1	96.7	95.4	94.7

Modified from SGS 2021 internal report (Crary, 2021)

The average gravity + flotation recovery for the TBC and A51 samples was ~96%. The overall recoveries (gravity + flotation+ cyanidation) for the Master Composites were ~95% (TBC) and ~97% (A51). It should be noted that the test conditions for the variability tests were slightly different (less flotation time) than the Master Composite tests shown (F-2 and F-5). The average rougher concentrate mass pull for the variability tests was ~4%.

13.1.3 Conclusions for the Fenelon Gold Mine Deposit

The commercial-scale milling to process the 2018 and 2019 bulk sample batches corroborates the testwork results completed by the CRM but with a lower cyanide consumption.

The relatively low work index for the Fenelon material, combined with the presence of chalcopyrite and pyrrhotite, does not affect the leaching time or the recovery, as anticipated from the CRM testwork results.

The Camflo milling facilities, with the modifications described above, seem adequate to treat the material from the Project successfully.

Metallurgy testing on composites from Tabasco and Area 51 zones, completed by SGS in 2020, achieved good gold recoveries using standard grind size and processing technologies. The results are comparable to the results achieved from the Main Gabbro zone. The 2021 metallurgical test results compare well to past test programs in terms of overall gold recovery. The gravity / flotation / cyanidation flowsheet examined achieved high gold recoveries for both ore zones tested, ~95% (TBC Master Composite) and ~97% (A51 Master Composite). Like the previous test program, the gravity gold recovery was high, and further testwork should be conducted to examine the impact of including a gravity circuit in the flowsheet.

[^] Overall Au % = Gravity, % + {[100-Gravity, %) x Flot Unit, %] x CN Extraction, %}

^{*} CN-Extraction from test CN-1

^{**} Flotation recovery from tests F-2 (TBC) and F-5 (A51)

13.2 Martiniere Deposit

This section was taken and updated from the previous technical report on the Property (Pelletier and Nadeau-Benoit, 2021).

Three rounds of metallurgical testwork have been done on composites from the Martiniere deposit, with one on material from the Martiniere West zones (Welte-Kerne and Johnston, 2012 and Welte-Kerne and Johnston, 2013) and two on the Bug Lake zones (DiLauro and Dymov, 2014; Martin, 2015). None of the metallurgical reports were publicly filed, although results have been previously summarized in the technical reports by Mumford and Voordouw (2017) and Voordow and Jutras (2018).

13.2.1 2012 and 2013 ALS Metallurgy

A shipment of 27 samples, weighing a combined 47 kg, was sent to ALS Metallurgy Kamloops in Kamloops, British Columbia. These samples were collected from the Main Subzone of the Martiniere West deposit and were homogenized into a single "Master Composite" grading 6.4 g/t Au, 8.0 g/t Ag and 0.7% As, then grinded to 80% passing (P80) 100 µm (Welte-Kerne and Johnston, 2012). The mineralogy of this Master Composite, as determined by quantitative evaluation of minerals by scanning electron microscope ("QEMSCAN"), comprised 53% quartz, 15% muscovite, 9% each chlorite and pyrite, 1-2% each arsenopyrite and garnet, <1% feldspar and chalcopyrite and 10% "others". The arsenic content lies near the high end of what is returned for gold-bearing ICP analyses from Martiniere West and may be unrepresentatively high.

Metallurgical testing aimed to evaluate gold recoveries using gravity separation, flotation and cyanidation bottle roll leach tests. All testing was done on a primary grind size of P80 100 μ m. Gravity separation was done in a lab-scale Knelson concentrator and was followed by panning. Gold and silver recoveries in the gravity concentrate averaged 35% and 16%, respectively, with the final pan concentrate grading 444 g/t Au and 168 g/t Ag. These results suggest the potential for incorporating a gravity circuit into the flow sheet (Welte-Kerne and Johnston, 2012).

A single kinetic rougher flotation test was done using natural pH and a potassium amyl xanthate (PAX) collector. Results show that 97% of the feed gold and 87% Ag was recovered at 18% feed mass recovery, generating a rougher concentrate grading 36 g/t Au. These results suggest the potential for a flowsheet that includes rougher concentration, re-grinding and then cyanide leaching (Welte-Kerne and Johnston, 2012).

Results from a cyanidation bottle roll test show 48-hour gold extraction of 62% and that very little additional extraction occurred after the first 24 hours. Sodium cyanide consumption was relatively low, at 0.8 kg per tonne, and lime consumption was about 0.4 kg/t.

Follow-up testing by ALS Metallurgy Kamloops on the same Master Composite included whole ore cyanidation on a finer grind size (P80 of 71 μ m) and testing of a flow sheet comprised of gravity separation followed by re-grinding and cyanidation of rougher concentrate (Welte-Kerne and Johnston, 2013). Whole ore cyanidation was conducted for 48 hours with a target sodium cyanide concentration of 1 kg per tonne and pH maintained at 11.0. Testing achieved similar results to earlier work (Welte-Kerne and Johnston, 2012), with 63% of gold extracted with consumption of 0.8 kg/t NaCN and 0.6 kg/t lime. Most of the gold was extracted after 6 hours.

Gravity separation by Knelson concentration followed by panning averaged 37% gold recovery, which was similar to earlier testwork (Welte-Kerne and Johnston, 2012). Subsequent rougher flotation recovered another 60% in the flotation concentrate. Regrinding of this concentrate to P80 16 µm followed by cyanidation resulted in 58% gold extraction, whereas cyanidation without regrinding recovered 48% gold (Welte-Kerne and Johnston, 2013). Combined recoveries for this flowsheet are therefore 72% gold with regrinding of rougher concentrate and 66% without. Sodium cyanide consumption was 1.3 and 3.3 kg/t for non-reground and reground concentrate, respectively, with lime consumption at 1.0 kg/t and 2.8 kg/t. This testwork therefore demonstrated that better gold recoveries could be achieved with a flowsheet that combines gravity concentration, rougher flotation and then regrinding and cyanidation of rougher concentrate (Welte-Kerne and Johnston, 2013).

13.2.2 2014 SGS Minerals Services

The first metallurgical testing on material from the Bug Lake zones was performed in 2014 by SGS Minerals Services of Lakefield ("SGS Lakefield") on a composite comprised of 49 half-core samples taken from three drill holes that cut the North Zone (the "Bug Composite"; drill holes MDE-13-119, -120, -121). The Bug Composite consists mostly of samples taken from the Lower Bug Lake subzones and representative material from the Upper Bug Lake subzones in the hanging wall and footwall. Average head grades were 6.78 g/t Au, 7.09 g/t Ag, 3.34% sulphide sulphur and 13.1% carbonate (DiLauro and Dymov, 2014). Mineralogy determined by QEM automated rapid mineral scan ("QEM-ARMS") is distinctly more carbonate- and chlorite-rich than the Martiniere West composite, comprising 31.8% quartz, 23.7% carbonate (calcite > dolomite > ankerite), 20.9% chlorite, 10% mica, 8.8% pyrite and trace abundances of Cu-sulphide, arsenopyrite and sphalerite.

Metallurgical testing done by SGS Lakefield included (1) whole-ore cyanidation, (2) gravity separation followed by gravity tailing cyanidation, and (3) gravity separation followed by gravity tailing flotation and then cyanidation of the flotation products. Overall process results are summarized in Table 13.3.

Whole-ore cyanidation of the Bug Composite returned recoveries of 72% to 81% for Au, with higher recoveries related to finer grind sizes and increased NaCN consumption (Table 13.3). Conditions applied were 40% solids for 48 hours with cyanide concentration maintained at 0.5 g/L and the pH maintained between 10.5 and 11.0 by adding lime as calcium hydroxide. The presence of carbon caused no significant change in Au and Ag recoveries (DiLauro and Dymov, 2014).

Gravity separation testing was done with a Knelson MD-3 concentrator followed by a Mozley mineral separation. Recoveries in the Mozley gravity concentrate were dependent on grind size, ranging from 7.3% Au and 3.1% Ag for a grind size of 198 μm , to 24.3% Au and 9.7% Ag for the finest grind of 58 μm . Concentrate assays ranged from 650 to 2591 g/t Au and 265 to 1079 g/t Ag, and in all cases comprised <0.1% of the total mass. The Mozley and Knelson tailings were recombined and blended for downstream flotation and cyanidation test work.

The flotation test for gravity tailings was done with total additions of 100 g/t PAX and 50 g/t Cytec A 208 collectors, with a series of five rougher concentrates recovered and assayed for gold and sulphide sulphur. Recoveries in concentrates 1 to 3 were reported at 91% Au and 95% Ag respectively, with a mass pull of 9.2%. Flotation cycles 4 and 5 increased recoveries to 94% Au and 97% sulphide sulphur for the combined rougher

concentrates and the mass pull to 12.3%. Tailings contained 0.38 g/t Au and 0.10% sulphide sulphur. When combining the 19% gold recovery from the gravity concentrate with the 94% Au recovered from gravity tailing flotation, the overall gold recovery for the Bug Composite is calculated at 95% (Table 13.4).

Bottle roll cyanidation testing of gravity tailings was done on three grind sizes (Table 13.3) with applied conditions similar to the whole ore cyanidation. Gold and silver recoveries ranged from 67% Au and 59% Ag for the coarsest grind to 75% Au and 70% Ag for the finest grind. Again, the addition of carbon made no difference to the recoveries. An increase in NaCN consumption was observed with decreased grind size, going from 0.12 kg/t NaCN at P80 grind size of 198 μm to 0.53 kg/t at P80 of 58 μm . There was no significant difference in lime consumption. The combined gravity plus gravity tailing cyanidation recoveries ranged from 71% Au and 61% Ag to 81% Au and 72% Ag (Table 13.3).

Table 13.4 – Results of SGS' 2014 metallurgical testwork (from DiLauro and Dymov, 2014)

Process	Size P80 microns	Reagent Cons. NaCN kg/t	Recovery Au %	Residue g/t Au	Recovery Ag %	Residue g/t Ag
	174	0.13	72%	2	65%	2.2
Whole ore CN	73	0.51	79%	1.58	72%	1.8
	52	0.69	81%	1.37	73%	1.8
	198	0.12	71%	2.09	61%	2.9
Gravity → CN	84	0.22	78%	1.59	71%	2
	58	0.43	81%	1.41	72%	2
Gravity →	84	0.65	74%	1.84	82%	2.16
Flotation → CN	84/12	2.42	91%	0.95	97%	1.3

Table 13.5 – Flotation metallurgical balance summary

			S 41		% Distribution			
Product	Mass	%	Assays Au g/t	% S	Au Flotation	Au Gravity + Flotation	s	
Gravity recovery						19.4		
Rougher concentrate 1	226	5.69	69.8	43.2	70.2	56.6	73	
Rougher concentrate 2	75.3	1.9	49	30.2	16.4	13.2	17	
Rougher concentrate 3	65	1.65	15.8	9.65	4.6	3.7	4.7	
Rougher concentrate 4	61.1	1.54	6.64	3.74	1.8	1.5	1.7	
Rougher concentrate 5	60.3	1.52	3.93	1.99	1.1	0.9	0.9	
Rougher tail	3484	87.71	0.38	0.1	5.9	4.7	2.6	
Head (calculated)	3972.4	100	5.66	3.36	100	100	99.9	

For the cyanide leach testing of flotation concentrate and tailings, it was decided to combine rougher concentrates 1 to 3 as the "final flotation concentrate" and recombine rougher concentrates 4 and 5 with the rougher tailing as the "final flotation rougher tailing" (DiLauro and Dymov, 2014). The final flotation concentrate assayed 56 g/t Au and 34.5% sulphide sulphur with a mass pull of 9.2%, whereas the final flotation rougher tailing has 0.55 g/t Au and 0.19% sulphide sulphur. Conditions applied for cyanidation were 20% solids for 48 hours with pH maintained between 10.5-11.0 and cyanide concentration maintained at 5.0 g/L. Cyanidation of rougher concentrate with P80 grind size of 84 µm was 72% Au and 78% Ag, with reagent consumptions of 6.4 kg/t NaCN and 0.38 kg/t of lime. Re-grinding of this concentrate to P80 grind size of 12 µm yielded extractions of 89% Au and 96% Ag with reagent consumptions of 25.5 kg/t NaCN and 0.03 kg/t of lime. Cyanidation of the rougher flotation tailing at P80 of 84 µm returned final extractions of 72% Au and 59% Ag, with reagent consumptions of 0.07 kg/t NaCN and 0.34 kg/t of lime.

A diagnostic leach program on the gravity tailing cyanide residue at P80, grind size of 58 µm, was used to assess possible mineralogical associations for refractory gold and silver. Results indicate that most of the refractory gold (86.1%) is likely associated with, or occluded by, sulphide minerals, pyrite and/or arsenopyrite, whereas 70.6% of refractory silver could occur in sulphide minerals, pyrite, arsenopyrite, complex Ag minerals with iron and manganese, As-Sb sulphide, pyrrhotite, calcite and/or ferrites (DiLauro and Dymov, 2014).

13.2.3 2015 Blue Coast

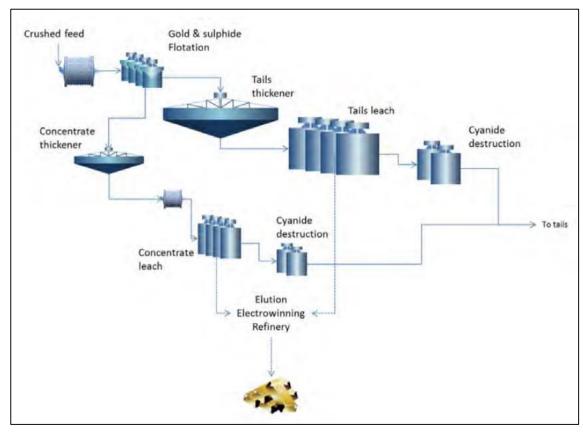
In 2015, Blue Coast Research Limited of Parksville, British Columbia ("Blue Coast") was contracted to follow up on the 2014 metallurgical testing done by SGS Lakefield to evaluate the recovery upside for a flowsheet that combines flotation, concentrate regrinding and cyanidation (Martin, 2015). Testing was done on the same Bug Composite prepared by SGS Lakefield, which was re-assayed by Blue Coast to yield head grades of 6.29 g/t Au and 6.7 g/t Ag. Blue Coast noted that the 18-month age of the Bug Composite could have potentially impacted flotation performance (Martin, 2015).

Three flotation tests were done to determine optimal grind size, and two were done to create concentrates for leach testing. All three grind sizes (54, 86, 127 μ m) produced comparable gold (97%) and silver (92-93%) recoveries once the mass pull to concentrate had reached 20%. Therefore, it was decided to use the coarsest grind for leach testing, so tests 4 and 5 were done with material ground to 127 μ m.

Cyanidation was done on both flotation concentrate and tails. Four leach tests were done on the flotation concentrate to examine the effects of grind size, cyanide concentration and lead nitrate. Leaching was described as "extremely rapid", with gold extraction peaking after 3-5 hours using cyanide concentration of 5 g/L and no lead nitrate. The use of finer grind somewhat enhanced the leach kinetics, although the peak extraction stayed the same at about 92.5% Au. The addition of lead nitrate had no positive effect and may actually have slowed leach kinetics.

Some of the gold appeared to drop out of solution after 3-5 hours in a weak process referred to as "preg-borrowing" (Martin, 2015). The addition of carbon failed to combat this effect, with recoveries dropping to 86.8% Au and 86.4% Ag. Martin (2015) states that the preg-borrowing mechanism is weak and at least somewhat reversible and that further investigation may lead to overall enhanced metallurgical recoveries.

Concentrate tails were leached for 24 hours at 0.5 kg/t cyanide and pH 11, with testing showing low cyanide (0.13 kg/t) and lime (0.2 kg/t) consumption. Results showed that 83% of the silver in the tails was leached together with 65% of the gold. Overall, 0.24 g/t Au and 0.4 g/t Ag were extracted through the leach, comprising 2.5% and 6.3% of the Au and Ag mill feed, respectively.


The final test done by Blue Coast comprised re-grinding pyrite concentrate and flotation tails to P80 of 12 μ m followed by cyanide leaching. The leach performance on this coprocessed stream was 10% below those achieved through separate leaching of concentrate and tails.

As a result of this work, Blue Coast proposed a flowsheet that includes separate leaches for concentrate and tails (Figure 13.1). It projected overall extractions of 91.4% Au and 80.2% Aq (Table 13.5).

Table 13.6 – Metallurgical balance from separate concentrate and tails leach option (Martin, 2015)

	Mass (%)	Gold (%)	Silver (%)
Feed	100	100	100
Flotation concentrate	20.4	96.1	92.5
Concentrate leach extraction	n/a	88.9	74
Concentrate leach residue	20.4	7.2	18.5
Flotation Tails	79.7	3.9	7.5
Tails leach extraction	n/a	2.5	6.2
Tails leach residue	79.7	1.4	1.3
Combined circuit extraction	n/a	91.4	80.2

From Martin (2015)

Figure 13.1 – Proposed flotation and cyanidation flowsheet for the Bug Composite

14. MINERAL RESOURCE ESTIMATES

The updated mineral resource estimates for the Fenelon and Martiniere deposits (combined, the "Detour-Fenelon Gold Trend 2023 MRE" or "2023 MRE") were prepared by QPs Carl Pelletier (P.Geo.), Vincent Nadeau-Benoit (P.Geo.), Simon Boudreau (P.Eng.) and Marc R. Beauvais (P. Eng.) all of InnovExplo, using all available information.

The effective date of the 2023 MRE is January 13, 2023.

The close-out date of the Fenelon database is October 19, 2022. The close-out date of the Martiniere database is August 31, 2022.

14.1 Methodology

The Fenelon area, which includes the mineral resource area of the Fenelon deposit, has a NW strike length of 3,000 m, a width of 2,000 m, and a vertical extent of 1,000 m below the surface. Located 30 km west of the Fenelon deposit, the mineral resource area of the Martiniere deposit has a NE strike length of 1,000 m, a width of 350 m and a vertical extent of 300 m (Martiniere West and Central Trend), and a NW strike length of 1,500 m, a width of 600 m and a vertical extent of 400 m (Bug Lake Trend).

The 2023 MRE is based on a compilation of historical and recent drill holes and a lithostructural model constructed in Leapfrog by the issuer's geologists and subsequently validated by the QPs.

The 2023 MRE was prepared using the Leapfrog Geo software v.2022.1.1 with the Edge Extension ("Edge"). Edge was used for the grade estimation, variography and block modelling. Basic statistics, capping and validations were established using a combination of Edge, Microsoft Excel and Snowden Supervisor v.8.14 ("Supervisor").

The main steps in the methodology were as follows:

- Review and validation of the drill hole databases.
- Validation of the topographic surfaces, bedrock surfaces, the geological model and the interpretation of the mineralized zones based on lithological and structural information and gold content.
- Perform a capping study on assay data for each structure of each deposit.
- Grade compositing.
- Geostatistics (spatial statistics).
- Grade interpolation.
- Validation of the grade interpolation.
- Mineral resource classification.
- Assessment of mineral resources with "reasonable prospects for economic extraction" and selection of appropriate cut-off grades and constraining volumes for a scenario combining open-pit and underground mining.
- Generation of a mineral resource statement.

14.2 Drill Hole Databases

Both deposits, Fenelon and Martiniere, have their own drill hole database.

The database covering the Fenelon deposit contains 1,056 surface drill holes (515,910.66 m) and 383 underground drill holes (52,646.93 m). A subset of 1,350 drill

holes (536,621.71 m) was used to create the mineral resource database (Figure 14.1). This selection contains 312,123 sampled intervals taken from 377,729.50 m of drilled core. All the intervals were sampled for gold.

The database covering the Martiniere deposit contains 665 surface drill holes (184,162.62 m). A subset of 596 drill holes (169,266.07 m) was used to create the mineral resource database (Figure 14.2). This selection contains 122,312 sampled intervals taken from 126,791.00 m of drilled core. All the intervals were sampled for gold.

Both databases also include lithological, alteration and structural descriptions taken from drill core logs. Oriented core data is available for the Fenelon deposit starting in September 2018 and for the Martiniere deposit for all Wallbridge drill holes (2021 and later).

The databases cover the strike length of each mineral resource area at variable drill spacings: from 20 to 200 m for the Fenelon deposit and from 20 to 150 m for the Martiniere deposit.

In addition to tables of raw data, the mineral resource databases includes tables of calculated drill hole composites and wireframe solid intersections, which are required for the statistical evaluation and mineral resource block modelling.

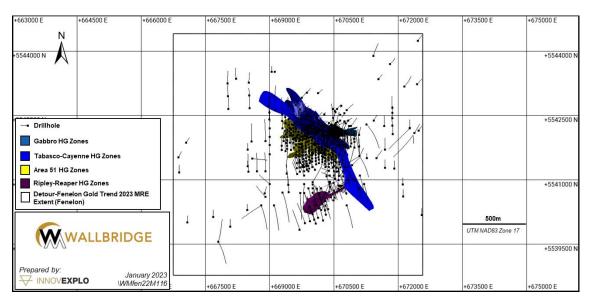


Figure 14.1 – Surface plan view of the Fenelon deposit showing the validated drill holes used for the 2023 MRE

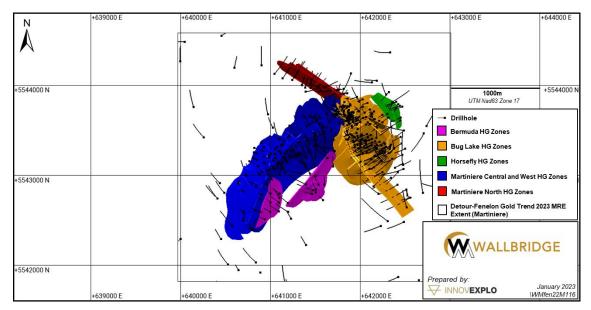


Figure 14.2 – Surface plan view of the Martiniere deposit showing the validated drill hole used for the 2023 MRE

14.2.1 Geological Model

The litho-structural models for the Fenelon and Martiniere deposits were built by the issuer's geologists using the drill hole databases as the primary source of information (assays, lithological units, alteration and mineralization).

The Fenelon model consists of 112 high-grade zones and 7 low-grade envelopes (Figure 14.3). The Martiniere model consists of 75 high-grade zones and 9 low-grade envelopes (Figure 14.4). All geological solids were modelled in Leapfrog.

For Fenelon, the high-grade zones were designed to the true thickness of the mineralization (on average down to a minimum thickness of 0.5 m but locally down to 0.2 m, depending on the assay length) and based on a cut-off grade of 1.0 g/t Au. The high-grade zones from the last selected intercept or are fixed at the mid-distance of an intercept that does not meet the minimum grade criterion. The solids were snapped to drill holes. These high-grade zones represent mineralized structures based mainly on gold grade. In-hole oriented data helped refine the shape and orientation of the solids (i.e., measurements of quartz-rich shear veins associated with the mineralization of Area 51 or measurements of shearing corridors associated with the mineralization for the Tabasco, Cayenne and Gabbro zones). A geological model based on the logging descriptions (logged units, structures, alteration and mineralization) were also used to assess those mineralized structures (and locally constrain them).

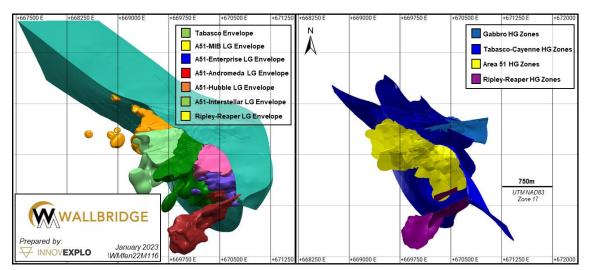


Figure 14.3 – Inclined view of the Fenelon model looking north: envelopes (left) and high-grade zones (right)

For Martiniere, the high-grade zones were designed to the true thickness of the mineralization (on average down to a minimum thickness of 0.5 m but locally down to 0.2 m, depending on the assay length) and based on a cut-off grade of 1.0 g/t Au. The solids extend to a radius of up to 50 m from the last selected intercept or are fixed at the mid-distance of an intercept that does not meet the minimum grade criterion. The solids were snapped to drill holes. The high-grade zones represent mineralized structures based mainly on gold grade. Logging descriptions (logged units, structures, alteration and mineralization) were also used to assess the mineralized structures. A geological model based on the logging descriptions (logged units, structures, alteration and mineralization) were also used to assess those mineralized structures (and locally constrain them). Drilling completed by Wallbridge since 2021 (oriented core) helped to assess and refine the orientation of the mineralization zones (i.e., sulphide bands associated with the mineralization of Martiniere West).

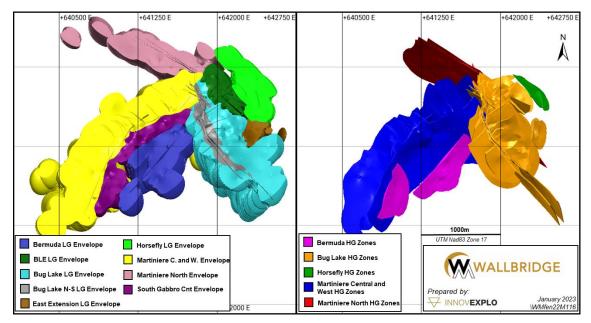


Figure 14.4 – Inclined view of the Martiniere model looking north: envelopes (left) and high-grade zones (right)

Two surfaces were also created for each deposit to define topography, using drill hole collar survey data and the overburden-bedrock contact generated from drill hole descriptions.

14.2.2 Voids Model

The Fenelon deposit has underground openings and an open pit. The 3D wireframes of the exploration ramp, bulk sample stopes and open pit, all surveyed by the issuer, are located in the area of the Gabbro Zones as well as Area 51 Zones and intersect some of the high-grade zones in these area (Figure 14.5). These 3D wireframes were included in the block models as voids (blocks inside these wireframes were depleted).

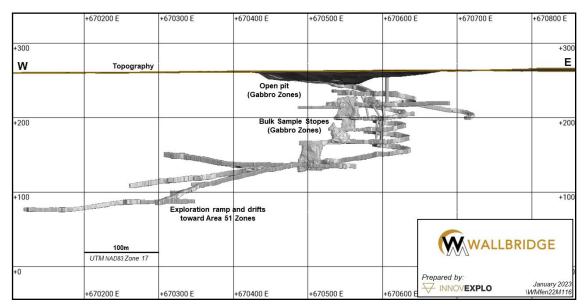


Figure 14.5 – Longitudinal section of the voids for the Fenelon deposit, looking north

14.2.3 High-grade Capping

For each deposit, basic univariate statistics were completed on individual high-grade zones and envelopes. Capping was applied to raw assays. Capping values were selected by combining the dataset analysis (COV, decile analysis, metal content) with the probability plot and log-normal distribution of grades. Table 14.1 and Table 14.2 summarize the statistical analysis for the grouped zones in each structure of each deposit. Figure 14.5 shows graphs supporting the capping value for the Cayenne 1 as an example for Fenelon. Figure 14.6 shows graphs supporting the capping value for the high-grade zone, Bug Lake South ("BLS") Lower Contact, as an example for Martiniere.

Table 14.1 – Summary statistics for the drill hole raw and capped assays for the Fenelon deposit

Grouped Zones/Envelope (No. of Volumes)	No. of Samples	Max (g/t Au)	Uncut Mean (g/t Au)	COV Uncut	Capping (g/t Au)	No. of Samples Cut	Samples Cut (%)	Cut Mean (g/t Au)	COV Cut
TCG - Tabasco Envelope (1)	115371	102.07	0.05	10.81	10	10	0.01%	0.04	4.86
A51 - Andromeda Envelope (1)	49265	91.80	0.09	7.96	10	19	0.04%	0.08	4.82
A51 - Enterprise Envelope (1)	21984	154.00	0.08	14.99	10	16	0.07%	0.07	5.93
A51 - Hubble Envelope (1)	27440	37.45	0.07	6.83	10	7	0.03%	0.07	5.09
A51 - Interstellar Envelope (1)	4832	15.10	0.07	6.81	6	9	0.19%	0.07	5.45
A51 - MIB Envelope (1)	18 331	106.00	0.09	11.06	10	8	0.04%	0.08	5.01
RR - Ripley Main Envelope (1)	4 638	5.67	0.16	2.19	4	3	0.06%	0.16	2.15
A51 - Andromeda HG Zones (28)	6 730	351.00	1.92	4.29	65	16	0.24%	1.79	3.05
A51 - Enterprise HG Zones (16)	1 376	910.00	3.22	8.41	65	6	0.44%	2.30	3.10
A51 - Hubble HG Zones (13)	927	140.00	1.78	3.94	25	4	0.43%	1.52	2.32
A51 - MIB HG Zones (18)	1 730	201.00	2.64	3.77	65	9	0.52%	2.41	2.93
TCG - Gabbro HG Zones (14)	4 796	1765.00	6.73	7.15	25 - 330	56	1.17%	4.84	5.26
TCG - Cayenne HG Zones (3)	4 078	897.00	6.63	6.03	35 - 330	19	0.47%	5.73	4.83
TCG - JD Contact Zone (1)	3 215	360.00	2.25	5.82	100	5	0.16%	1.98	4.00
TCG - TabArea51 Zones (5)	355	101.00	2.04	3.75	25	3	0.85%	1.63	2.33
TCG - Tabasco Minor Zones (2)	173	22.76	0.93	2.75	Not Capped	0	0.00%	0.93	2.75
TCG - Tabasco Zones (6)	4 225	277.00	1.80	5.11	25 - 100	27	0.64%	1.64	4.23
RR - Ripley-Reaper (6)	832	437.00	1.59	9.61	25	3	0.36%	1.09	2.31

Table 14.2 – Summary statistics for the drill hole raw and capped assays for the Martiniere deposit

Grouped Zone/Envelope (No. of Volumes)	No. of Samples	Max (g/t Au)	Uncut Mean (g/t Au)	COV Uncut	Capping (g/t Au)	No. of Samples Cut	Samples Cut (%)	Cut Mean (g/t Au)	COV Cut
BER - Bermuda Envelope (1)	2801	6.79	0.02	6.00	1	8	0.29%	0.02	3.20
HF - Horsefly Envelope (1)	4025	3.89	0.05	3.28	3	1	0.02%	0.05	3.24
BLN/BLS - East Extension Envelope (1)	1668	4.39	0.05	5.03	1.5	7	0.42%	0.04	3.62
BLN/BLS - Bug Lake Envelope (1)	16367	49.00	0.09	7.25	6	17	0.10%	0.08	3.74
BLN/BLS - Bug Lake N and S Envelope (1)	18214	34.60	0.05	8.19	4	14	0.08%	0.04	3.85
BLN/BLS - BLE Envelope (1)	4878	7.99	0.05	3.53	3	2	0.04%	0.05	3.10
MWC - Martiniere W and Central Envelope (1)	39801	91.50	0.08	10.97	4	88	0.22%	0.07	3.65
MWC - South Gabbro Contact Zone Envelope (1)	2888	0.78	0.03	1.68	1	0	0.00%	0.03	1.68
MN - Martiniere North Envelope (1)	9647	55.70	0.10	6.93	4	24	0.25%	0.09	3.29
BER - Bermuda HG Zones (4)	234	12.15	0.39	2.13	Not Capped	0	0.00%	0.39	2.13
BLN/BLS - BLE HG Zones (9)	888	195.5	1.53	6.42	25	13	1.46%	0.99	3.24
BLN/BLS - BLN HG Zones (7)	2559	1255	2.25	10.04	25 - 100	29	1.13%	1.62	4.55
BLN/BLS - BLN Upper/Lower Contact HG Zones (4)	2166	8330	3.98	36.33	45	8	0.37%	1.41	2.59
BLN/BLS - BLS HG Zones (10)	2163	124.00	0.99	4.09	25 - 35	8	0.37%	0.92	3.26
BLN/BLS - BLS Upper/Lower Contact HG Zones (2)	2451	178.50	1.42	4.01	45	7	0.29%	1.31	2.83
BLN/BLS - East Extension HG Zones (2)	45	77.89	4.02	3.26	45	1	2.22%	3.23	2.75
MWC - Martiniere Central HG Zones (9)	773	129.90	1.06	5.27	25	5	0.65%	0.87	3.05
MWC - Martiniere West Steep HG Zones (2)	1186	407.00	2.31	5.37	90	5	0.42%	2.08	3.73
MWC - Martiniere West HG Zones (17)	4239	164.50	0.65	5.78	40	7	0.17%	0.59	3.71
MWC - South Gabbro Contact HG Zone (1)	308	21.20	0.74	3.18	Not Capped	0	0.00%	0.74	3.18
MN - Martiniere North HG Zones (6)	1705	99.90	0.95	3.65	25	5	0.29%	0.88	2.32
HF - Horsefly HG Zones (2)	169	41.10	1.33	3.05	Not Capped	0	0.00%	1.33	3.05

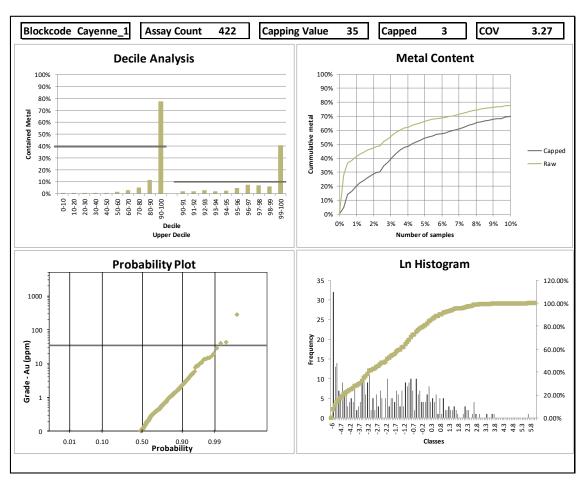


Figure 14.6 – Example of graphs (Cayenne 1) supporting the established capping value for the Fenelon deposit

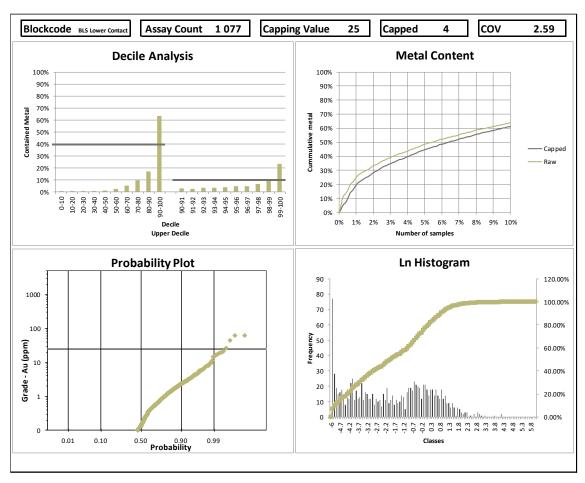


Figure 14.7 – Example of graphs (BLS Lower Contact) supporting the established capping value for the Martiniere deposit

14.2.4 Density

Density (specific gravity) is used to calculate tonnage from the estimated volumes in the resource-grade block model.

Wallbridge's database contains density measurements obtained by standard water immersion methods on core samples. Table 14.3 and Table 14.4 summarize the available density information by high-grade zones and low-grade envelopes by deposit.

Due to the paucity of data, median values of the density measurements were applied to the high-grade zones of the Fenelon deposit (2.81 g/cm³), the low-grade envelopes of the Fenelon deposit (2.80 g/cm³), the high-grade zones of the Martiniere deposit (2.83 g/cm³) and the low-grade envelopes of the Martiniere deposit (2.81 g/cm³). A density of 3.00 g/cm³ was assigned to high-grade zones associated with massive sulphides (Martiniere only), 2.00 g/cm³ was assigned to the overburden, and 0.00 g/cm³ to the voids.

Table 14.3 – Summary of density measurements for the Fenelon deposit

Grouped Zones/Envelopes	Count	Min (g/cm³)	Max (g/cm³)	Mean (g/cm³)	Median (g/cm³)
TCG - Tabasco Envelope	154	2.66	3.06	2.81	2.79
A51 - Andromeda Envelope	18	2.79	2.92	2.82	2.82
A51 - Enterprise Envelope	38	2.75	3.01	2.86	2.86
A51 - Hubble Envelope	18	2.70	3.01	2.84	2.84
A51 - Interstellar Envelope	30	2.71	2.88	2.77	2.76
A51 - MIB Envelope	59	2.74	2.99	2.82	2.82
RR - Ripley Main Envelope	34	2.70	2.89	2.76	2.75
A51 - Andromeda HG Zones	5	2.78	2.87	2.85	2.86
A51 - Enterprise HG Zones	23	2.83	2.94	2.88	2.88
A51 - Hubble HG Zones	7	2.75	2.94	2.85	2.86
A51 - MIB HG Zones	24	2.76	2.94	2.83	2.82
TCG - Gabbro HG Zones	51	2.66	2.98	2.86	2.87
TCG - Cayenne HG Zones	58	2.72	3.00	2.81	2.80
TCG - JD Contact Zone	75	2.72	2.92	2.79	2.78
TCG - TabArea51 Zones	0	N/A	N/A	N/A	N/A
TCG - Tabasco Minor Zones	2	2.76	2.78	2.77	2.76
TCG - Tabasco Zones	30	2.72	2.91	2.78	2.78
RR - Ripley-Reaper	11	2.72	2.81	2.75	2.74
All	637	2.66	3.06	2.82	2.81

Table 14.4 – Summary of density measurements for the Martiniere deposit

Grouped Zones	Count	Min (g/cm³)	Max (g/cm³)	Mean (g/cm³)	Median (g/cm³)
BER - Bermuda Envelope	112	2.53	2.98	2.81	2.80
HF - Horsefly Envelope	196	2.22	3.27	2.79	2.81
BLN/BLS - East Extension Envelope	51	2.42	3.03	2.79	2.79
BLN/BLS - Bug Lake Envelope	1133	1.07	5.34	2.77	2.79
BLN/BLS - Bug Lake N and S Envelope	1128	1.07	396.90	3.19	2.81
BLN/BLS - BLE Envelope	384	1.65	12.00	2.80	2.79
MWC - Martiniere W and Central Envelope	2311	1.07	300.80	3.01	2.83
MWC - South Gabbro Contact Zone Envelope	59	1.88	3.05	2.77	2.77
MN - Martiniere North Envelope	566	2.51	3.93	2.78	2.77
BER - Bermuda HG Zones	4	2.78	2.89	2.82	2.81
BLN/BLS - BLE HG Zones	54	1.76	4.51	2.88	2.81
BLN/BLS - BLN HG Zones	179	1.70	4.37	2.90	2.82
BLN/BLS - BLN Upper/Lower Contact HG Zones	162	2.43	3.29	2.81	2.82
BLN/BLS - BLS HG Zones	97	1.83	4.37	2.83	2.83
BLN/BLS - BLS Upper/Lower Contact HG Zones	131	2.05	3.39	2.80	2.83
BLN/BLS - East Extension HG Zones	0	N/A	N/A	N/A	N/A
MWC - Martiniere Central HG Zones	21	2.80	2.92	2.86	2.87
MWC - Martiniere West Steep HG Zones	33	2.55	3.09	2.88	2.87
MWC - Martiniere West HG Zones	206	2.25	4.47	2.87	2.86
MWC - South Gabbro Contact HG Zone	8	2.75	4.47	3.02	2.80
MN - Martiniere North HG Zones	108	2.61	3.23	2.81	2.81
HF - Horsefly HG Zones	5	2.77	2.88	2.82	2.81
All	6948	1.07	396.90	2.93	2.81

14.2.5 Compositing

To minimize any bias introduced by the variable sample lengths, the gold assays of the drill hole data were composited to 1.0-m lengths for Fenelon and Martiniere in each of the high-grade zones, low-grade zones and envelopes. The thickness of the mineralized structures, the proposed block size and the original sample lengths were considered when determining the composite length. Tails measuring less than half of the chosen composite length were equally distributed. A grade of 0.00 g/t Au was assigned to intervals not sampled by the logging geologists, and intervals with results not yet received from the laboratory (as of the close-out date of the database) were ignored. A total of 219,673 composites were generated for Fenelon and 75,918 for Martiniere.

Table 14.5 and Table 14.6 shows the basic statistics for the composites of the grouped high-grade zones, low-grade zones and envelopes. It illustrates the effect of capping and compositing on the COV of the capped data.

Table 14.5 – Summary statistics for the composites of the Fenelon deposit

0	Cut As	says		Compo	osites	
Grouped Zones/Envelopes	Mean (gt Au)	cov	No. of Comp.	Max (g/t Au)	Mean (g/t Au)	cov
TCG - Tabasco Envelope	0.03	5.11	166436	10.00	0.03	4.40
A51 - Andromeda Envelope	0.07	4.67	62116	9.72	0.07	3.82
A51 - Enterprise Envelope	0.06	5.73	27929	10.00	0.06	4.60
A51 - Hubble Envelope	0.06	5.03	35357	7.69	0.06	4.15
A51 - Interstellar Envelope	0.05	5.58	6291	6.00	0.05	4.71
A51 - MIB Envelope	0.07	4.88	23193	10.00	0.07	4.13
RR - Ripley Main Envelope	0.15	2.11	5730	4.00	0.15	1.88
A51 - Andromeda HG Zones	1.43	3.09	7466	65.00	1.43	2.57
A51 - Enterprise HG Zones	1.61	3.37	1531	52.36	1.61	2.62
A51 - Hubble HG Zones	1.24	2.33	1083	25.00	1.24	1.98
A51 - MIB HG Zones	1.81	3.02	1956	52.34	1.82	2.43
TCG - Gabbro HG Zones	2.64	7.02	5855	330.00	2.64	5.85
TCG - Cayenne HG Zones	3.59	5.65	4630	330.00	3.59	4.72
TCG - JD Contact Zone	1.52	4.24	3598	88.23	1.52	3.50
TCG - TabArea51 Zones	1.37	2.42	391	18.95	1.37	2.06
TCG - Tabasco Minor Zones	0.78	2.83	207	15.65	0.78	2.42
TCG - Tabasco Zones	1.18	4.76	5018	100.00	1.17	4.14
RR - Ripley-Reaper	1.02	2.32	977	25.00	1.02	2.01
All	0.22	16.22	359764	330.00	0.22	13.63

Table 14.6 – Summary statistics for the composites of the Martiniere deposit

	Cut As	ssays		Comp	osites	
Grouped Zone/Envelopes	Mean (gt Au)	cov	No. Of Comp.	Max (g/t Au)	Mean (g/t Au)	cov
BER - Bermuda Envelope	0.02	3.56	4103	1.00	0.02	3.16
HF - Horsefly Envelope	0.04	3.67	5121	2.35	0.04	3.19
BLN/BLS - East Extension Envelope	0.03	4.03	2307	1.50	0.03	3.75
BLN/BLS - Bug Lake Envelope	0.07	4.17	19770	6.00	0.07	3.82
BLN/BLS - Bug Lake N and S Envelope	0.03	4.49	25104	4.00	0.03	3.90
BLN/BLS - BLE Envelope	0.04	3.49	6023	2.48	0.04	2.90
MWC - Martiniere W and Central Envelope	0.06	3.96	49778	4.00	0.06	3.52
MWC - South Gabbro Contact Zone Envelope	0.02	1.90	4234	0.78	0.02	1.80
MN - Martiniere North Envelope	0.07	3.75	12475	4.00	0.07	3.15
BER - Bermuda HG Zones	0.38	2.18	267	5.48	0.38	1.75
BLN/BLS - BLE HG Zones	0.95	3.33	848	25.00	0.93	2.92
BLN/BLS - BLN HG Zones	1.54	4.67	2524	97.05	1.54	4.15
BLN/BLS - BLN Upper/Lower Contact HG Zones	1.39	2.62	1889	40.96	1.38	2.16
BLN/BLS - BLS HG Zones	0.82	3.46	2339	35.00	0.82	3.04
BLN/BLS - BLS Upper/Lower Contact HG Zones	0.16	8.42	18219	41.03	0.16	7.42
BLN/BLS - East Extension HG Zones	2.59	3.11	52	45.00	2.56	3.14
MWC - Martiniere Central HG Zones	0.79	3.22	935	25.00	0.78	2.83
MWC - Martiniere West Steep HG Zones	2.01	3.80	1078	71.85	2.01	3.19
MWC - Martiniere West HG Zones	0.55	3.85	4256	40.00	0.55	3.12
MWC - South Gabbro Contact HG Zone	0.71	3.24	337	20.93	0.72	3.10
MN - Martiniere North HG Zones	0.86	2.35	1583	25.00	0.86	2.03
HF - Horsefly HG Zones	1.33	3.05	155	30.94	1.33	2.45
All	0.16	9.07	163397	97.05	0.16	7.96

14.2.6 Block Model

A block model was created for each of the deposits. Due to the different orientations of high-grade zones and low-grade envelopes in the deposits, the QPs used unrotated subblock models (octree type) in Edge. High-grade zones and low-grade envelopes from the mineralization model were used as sub-blocking triggers. For Fenelon, the voids

(undergrounds openings and the gabbro pit surface) were also used as sub-block triggers.

The origin of each block model is the upper-south-left corner. Block dimensions reflect the sizes of the mineralized zones, plausible mining methods and the drilling grid.

Table 14.7 shows the properties of each block model.

Table 14.7 - Properties of block models

Properties	X (Columns)	Y (Rows)	Z (Levels)
Fenelon deposit			
Origin coordinates (UTM NAD83)	668725	5539850	330
Parent block size	4	4	4
Number of parent blocks	650	750	350
Sub-block size	1	1	1
Block model extent (m)	2600	3000	1400
Rotation	Not applied		
Martiniere deposit			
Origin coordinates (UTM NAD83)	640000	5541830	270
Parent block size	4	4	4
Number of parent blocks	740	675	210
Sub-block size	1	1	1
Block model extent (m)	2960	2700	840
Rotation	Not applied		

14.2.7 Variography and Search Ellipsoids

For the Fenelon and Martiniere deposits, 3D directional variography was completed on drill hole composites of capped gold assay data. The study was carried out in Supervisor. The 3D directional-specific investigations on each high-grade zone and envelope yielded best-fit models along orientations that correspond to the mean strike and dip of each zone/envelope. Locally, some high-grade zones did not contain enough composites to properly assess a best-fit model. Consequently, composites from similar zones (based on position and overall geology) were added to the study, and the resulting variogram models were adjusted to fit the mean orientation (azimuth and dip) of each of those specific high-grade zones. Three (3) sets of search ellipsoids (first, second and third search pass) were built from the variogram analysis, corresponding to 0.5x, 1.0x and 2.0x the results obtained from the variography study.

For the Fenelon deposit, the 3D directional-specific search ellipsoids for the broader high-grade zones of the Tabasco-Cayenne corridors and the Ripley-Reaper area were guided by the mid-planes of each modelled solids for an anisotropic search. For the Martiniere deposit, the 3D directional-specific search ellipsoids for the broader high-grade zones of the "Bug Lake South Lower Contact", "Bug Lake South Upper Contact" and "South Gabbro Contact Zone" were guided by the mid-planes of these modelled solids for an

anisotropic search. Other high-grade zones and low-grade envelopes in both deposits used search ellipsoids with a fixed orientation corresponding to the mean orientation of each high-grade zone and envelope.

For the Fenelon deposit, Figure 14.8 shows an example of the variography study using the Cayenne 1 high-grade zone, and Figure 14.9 presents an example of the search ellipse (full ranges) compared to the composite data points using again the Cayenne 1 high-grade zone (Cayenne 1).

For the Martiniere deposit, Figure 14.10 shows an example of the variography study, using the BLS Lower Contact high-grade zone, and Figure 14.11 presents an example of the search ellipse (full ranges) compared to the composite data points using again the BLS Lower Contact high-grade zone.

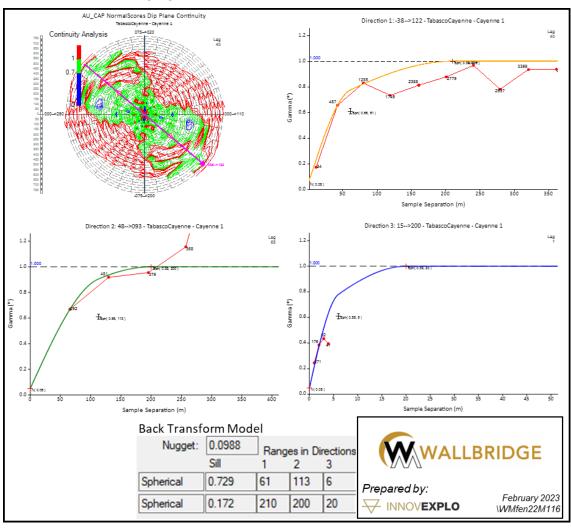


Figure 14.8 – Variograms for the Cayenne 1 HG Zone

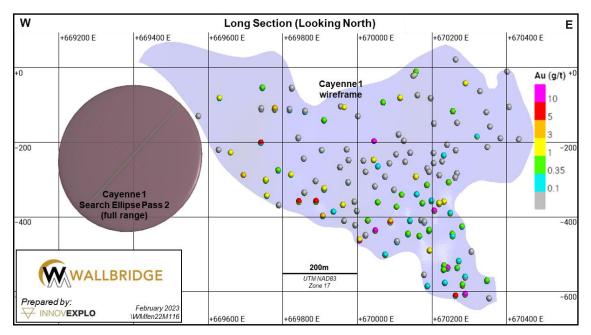


Figure 14.9 – Long section of the ellipsoid radii and wireframe for the Cayenne 1 HG Zone

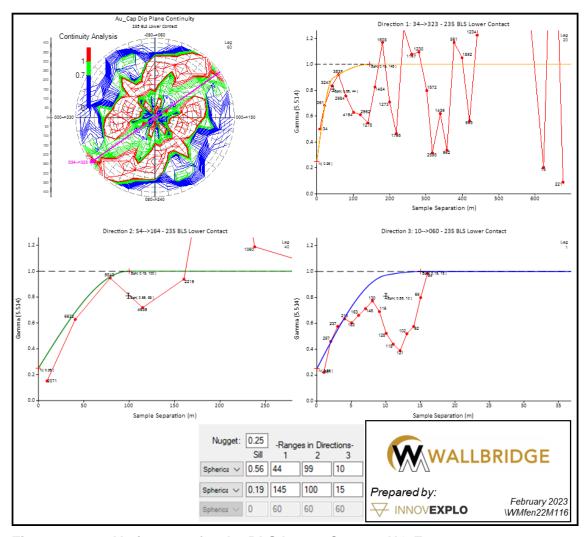


Figure 14.10 – Variograms for the BLS Lower Contact HG Zone

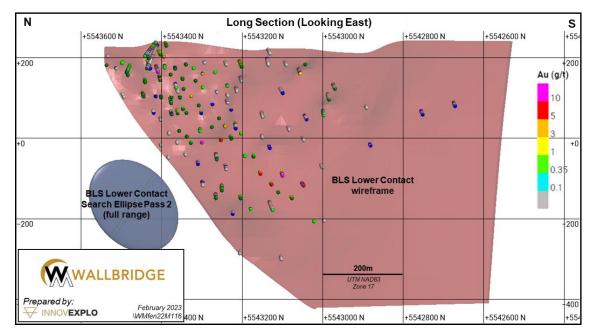


Figure 14.11 – Long Section of the ellipsoid radii and wireframe for the BLS Lower Contact HG Zone

14.2.8 Grade Interpolation

The interpolation profiles were customized for the high-grade zones and low-grade envelopes, and were used as interpolation domains with hard boundaries.

The variography study provided the parameters for interpolating the grade model using the composites. In Edge, the interpolation inside each domain was run on point datasets corresponding to the mid-points of the composite intervals.

A three-pass strategy was used with the capped composites.

The remaining high gold values, unconstrained by a high-grade zone but inside a low-grade envelope, used a restricted search to reduce the smearing of high gold values over large distances. The ID² method was selected for the final mineral resource estimate as it better honours the grade distribution for these types of deposits.

The parameters for the grade estimation specific to Edge are summarized in Table 14.8 for the Fenelon deposit and Table 14.9 for the Martiniere deposit.

Table 14.8 – Estimation parameters for the Fenelon deposit

	10		Composite Parameters			Edge Orientation			Ranges (Based on Variogram)			High-Grade Restricted Search	
Grouped Zones/Envelopes	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp.	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
	1	0.5 x vario. ranges	5	20	4	70	195	140	75	75	37.5	50	5
TCG - Tabasco Envelope	2	1.0 x vario. ranges	5	20	4	70	195	140	150	150	75	25	5
	3	2.0 x vario. ranges	4	20	4	70	195	140	300	300	150	12.5	5
A51 - Andromeda	1	0.5 x vario. ranges	5	20	4	85	155	60	100	65	40	50	5
A51 - Andromeda Envelope	2	1.0 x vario. ranges	5	20	4	85	155	60	200	130	80	25	5
	3	2.0 x vario. ranges	4	20	4	85	155	60	400	260	160	12.5	5
	1	0.5 x vario. ranges	5	20	4	70	165	50	75	57.5	12.5	50	5
A51 - Enterprise Envelope	2	1.0 x vario. ranges	5	20	4	70	165	50	150	115	25	25	5
	3	2.0 x vario. ranges	4	20	4	70	165	50	300	230	50	12.5	5
	1	0.5 x vario. ranges	5	20	4	80	155	70	80	60	25	50	5
A51 - Hubble Envelope	2	1.0 x vario. ranges	5	20	4	80	155	70	160	120	50	25	5
	3	2.0 x vario.	4	20	4	80	155	70	320	240	100	12.5	5

	10		Composite Parameters			Edge Orientation			Ranges (Based on Variogram)			High-Grade Restricted Search	
Grouped Zones/Envelopes A51 - Interstellar Envelope A51 - MIB Envelope RR - Ripley Main Envelope	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp.	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	1	0.5 x vario. ranges	5	20	4	90	170	70	90	52.5	35	50	3
A51 - Interstellar Envelope A51 - MIB Envelope RR - Ripley Main	2	1.0 x vario. ranges	5	20	4	90	170	70	180	105	70	25	3
	3	2.0 x vario. ranges	4	20	4	90	170	70	360	210	140	12.5	3
1	1	0.5 x vario. ranges	5	20	4	70	170	80	105	97.5	22.5	50	5
	2	1.0 x vario. ranges	5	20	4	70	170	80	210	195	45	25	5
	3	2.0 x vario. ranges	4	20	4	70	170	80	420	390	90	12.5	5
	1	0.5 x vario. ranges	5	20	4	45	140	65	105	87.5	17.5	50	2
	2	1.0 x vario. ranges	5	20	4	45	140	65	210	175	35	25	2
	3	2.0 x vario. ranges	4	20	4	45	140	65	420	350	70	12.5	2
	1	0.5 x vario. ranges	5	20	4		Oriented	65	100	40	35	N/A	N/A
A51 - Andromeda HG Zones		4	wiref	llel to the rames of ndividual	65	200	80	70	N/A	N/A			
	3	2.0 x vario. ranges	4	20	4	Juon	zones	65	400	160	140	N/A	N/A

	"			omposit iramete		Edg	Edge Orientation			Ranges (Based on Variogram)			High-Grade Restricted Search	
Grouped Zones/Envelopes	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp.	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Restrict Search N/A N/A N/A N/A N/A N/A N/A N/	Au Value (Au g/t)	
	1	0.5 x vario. ranges	5	20	4	Orient		80	72.5	45	20	N/A	N/A	
A51 - Enterprise HG Zones	2	1.0 x vario. ranges	5	20	4	parallel to the wireframes of each individual		80	145	90	40	N/A	N/A	
	3	2.0 x vario. ranges	4	20	4	zones		80	290	180	80	N/A	N/A	
	1	0.5 x vario. ranges	5	20	4			45-65	65-70	32.5- 42.5	15-20	N/A	N/A	
A51 - Hubble HG Zones	2	1.0 x vario. ranges	5	20	4	parallel to the wireframes of each individual		45-65	130- 140	65-85	30-40		N/A	
	3	2.0 x vario. ranges	4	20	4		zones		260- 280	130- 170	60-80	N/A	N/A	
	1	0.5 x vario. ranges	5	20	4	Orient		70	90	37.5	25	N/A	N/A	
A51 - MIB HG Zones	2	1.0 x vario. ranges	5	20	4	wirefra	el to the ames of ndividual	70	180	75	50	N/A	N/A	
	3	2.0 x vario. ranges	4	20	4	zones		70	360	150	100	N/A	N/A	
	1	0.5 x vario. ranges	5	20	4	Orient		55- 160	17.5- 67.5	15-55	10-30	N/A	N/A	
TCG - Gabbro HG Zones	2	1.0 x vario. ranges	5	20	4	wirefra	el to the ames of ndividual	55- 160	35-135	30-110	20-60	N/A	N/A	
	3	2.0 x vario. ranges	4	20	4	zones		55- 160	70-270	60-220	40-120	N/A	N/A	
TCG - Cayenne HG Zones	1	0.5 x vario. ranges	5	20	4	Variab Oriten		40-50	35-105	27.5- 100	20-30	N/A	N/A	

	"	Filinosid		omposit iramete		Edge Orientation			Ranges (Based on Variogram)			High-Grade Restricted Search	
Grouped Zones/Envelopes	Parameters Par	Au Value (Au g/t)											
	2		5	20	4			40-50	70-210	55-200	40-60	N/A	N/A
	3		4	20	4			40-50			80-120	N/A	N/A
	1		5	20	4			75	80	65	20	N/A	N/A
TCG - JD Contact Zone	2		5	20	4				160	130	40	N/A	N/A
	3		4	20	4			75	320	260	80		N/A
	1		5	20	4	90	355	70	50	42	15	N/A	N/A
TCG - TabArea51 Zones	2		5	20	4	90	355	70	100	84	30	N/A	N/A
	3		4	20	4	90	355	70	200	168	60	N/A	N/A
	1		5	20	4				87.5	42.5-60	6-15	N/A	N/A
TCG - Tabasco Minor Zones	2		5	20	4	wirefra	ames of		175	85-120	12-30	N/A	N/A
	3		4	20	4				350		24-60	N/A	N/A
TCG - Tabasco Zones	1	0.5 x vario. ranges	5	20	4	Variab	Variable		60-100	50-75	10-50	N/A	N/A
TCG - Tabasco Zones	2	1.0 x vario. ranges	5	20	4	Oriten	tation	70- 125	120- 200	100- 150	20-100	N/A	N/A

		Ellipsoid	Composite Parameters			Edge Orientation			_	es (Base ariogram	High-Grade Restricted Search		
Grouped Zones/Envelopes	Pass		Min Comp	Max Comp	Max Comp.	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
	3	2.0 x vario. ranges	4	20	4			70- 125	240- 400	200- 300	40-200	N/A	N/A
	1	0.5 x vario. ranges	5	20	4			50-80	82.5- 105	60-87.5	17.5-20	N/A	N/A
RR - Ripley-Reaper	2	1.0 x vario. ranges	5	20	4	Variab Oriten		50-80	165- 210	120- 175	35-40	N/A	N/A
	3	2.0 x vario. ranges	4	20	4			50-80	330- 420	240- 350	70-80	N/A	N/A

Table 14.9 – Estimation parameters for the Martiniere deposit

Grouped Zones/Envelope	"	Ellipsoid	Composite Parameters			Edge	Orienta	ation		es (Base ariogram	High-Grade Restricted Search		
	Pass		Min Comp	Мах	Max Comp. /drill hole	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
	1	0.5 x vario. ranges	4	12	3	70	120	100	50	27.5	10	50	0.5
BER - Bermuda Envelope	2	1.0 x vario. ranges	3	12	3	70	120	100	100	55	20	25	0.5
	3	1.5 x vario. ranges	3	12	3	70	120	100	200	110	40	12.5	0.5
	1	0.5 x vario. ranges	4	12	3	50	60	80	62.5	43	18	50	1.5
HF - Horsefly Envelope	2	1.0 x vario. ranges	3	12	3	50	60	80	125	86	36	25	1.5
	3	1.5 x vario. ranges	3	12	3	50	60	80	250	172	72	12.5	1.5
	1	0.5 x vario.	4	12	3	60	100	40	75	42.5	25	50	0.75
BLN/BLS - East Extension Envelope	2	1.0 x vario. ranges	3	12	3	60	100	40	150	85	50	25	0.75
	3	1.5 x vario. ranges	3	12	3	60	100	40	300	170	100	12.5	0.75
BLN/BLS - Bug Lake Envelope	1	0.5 x vario. ranges	4	12	3	65	65	140	60	50	40	50	3
	2	1.0 x vario. ranges	3	12	3	65	65	140	120	100	80	25	3
	3	1.5 x vario.	3	12	3	65	65	140	240	200	160	12.5	3

Grouped Zones/Envelope	"	Ellipsoid	Composite Parameters				Edge Orientation			es (Base ariogram	High-Grade Restricted Search		
	Pass		Min Comp	Max Comp	Max Comp. /drill hole	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	1	0.5 x vario. ranges	4	12	3	85	350	55	75	50	30	50	2
BLN/BLS - Bug Lake N and S Envelope	2	1.0 x vario. ranges	3	12	3	85	350	55	150	100	60	25	2
	3	1.5 x vario. ranges	3	12	3	85	350	55	300	200	120	12.5	2
	1	0.5 x vario. ranges	4	12	3	15	160	20	55	45	15	50	1.5
BLN/BLS - BLE Envelope	2	1.0 x vario. ranges	3	12	3	15	160	20	110	90	30	25	1.5
	3	1.5 x vario. ranges	3	12	3	15	160	20	220	180	60	12.5	1.5
	1	0.5 x vario. ranges	4	12	3	25	230	105	68	25	22	50	2
MWC - Martiniere W and Central Envelope	2	1.0 x vario. ranges	3	12	3	25	230	105	136	50	44	25	2
	3	1.5 x vario. ranges	3	12	3	25	230	105	272	100	88	12.5	2
MWC - South Gabbro Contact Zone Envelope	1	0.5 x vario. ranges	4	12	3	80	320	170	42.5	32.5	19.5	50	0.5
	2	1.0 x vario. ranges	3	12	3	80	320	170	85	65	39	25	0.5
	3	1.5 x vario.	3	12	3	80	320	170	170	130	78	12.5	0.5

	.	Ellipsoid	Compo	site Para	meters	Edge Orientation				es (Base iriogram	High-Grade Restricted Search		
Grouped Zones/Envelope	Pass		Min Comp	Max Comp	Max Comp. /drill hole	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	1	0.5 x vario. ranges	4	12	3	60	215	85	92.5	65	31	50	2
MN - Martiniere North Envelope	2	1.0 x vario. ranges	3	12	3	60	215	85	185	130	62	25	2
	3	1.5 x vario. ranges	3	12	3	60	215	85	370	260	124	12.5	2
	1	0.5 x vario. ranges	4	12	3	50	27.5	10	60	130	60	N/A	N/A
BER - Bermuda HG Zones	2	1.0 x vario. ranges	3	12	3	100	55	20	60	130	60	N/A	N/A
	3	1.5 x vario. ranges	3	12	3	200	110	40	60	130	60	N/A	N/A
	1	0.5 x vario. ranges	4	12	3		Oriented	175	50	17.5	15	N/A	N/A
BLN/BLS - BLE HG Zones	2	1.0 x vario. ranges	3	12	3	wire	allel to the eframes of individual	175	100	35	30	N/A	N/A
	3	1.5 x vario. ranges	3	12	3		zones	175	200	70	60	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	nara	Oriented	30-150	40-65	10-27.5	7.5-20	N/A	N/A
BLN/BLS - BLN HG Zones	2	1.0 x vario. ranges	3	12	3	wire	eframes of individual	30-150	80-130	20-55	15-40	N/A	N/A
	3	1.5 x vario.	3	12	3		zones	30-150	160-260	40-110	30-80	N/A	N/A

	10	Ellipsoid	Compo	site Para	meters	Edge Orien		es (Base iriogram	High-Grade Restricted Search			
Grouped Zones/Envelope	Pass		Min Comp	Мах	Max Comp. /drill hole	Dip Dip Azimuth	Pitch	Major (m)	Int.	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges										
	1 0.5 x vario. 4 12 3 Oriented			5-155	57.5-65	37.5-45	10-20	N/A	N/A			
BLN/BLS - BLN Upper/Lower Contact HG Zones	2	1.0 x vario. ranges	3	12	3	parallel to the wireframes of each individual	5-155	115-130	75-90	20-40	N/A	N/A
	3	1.5 x vario. ranges	3	12	3	zones	5-155	230-260	150- 180	40-80	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	Oriented	10-130	65-75	30-62.5	10-20	N/A	N/A
BLN/BLS - BLS HG Zones	2	1.0 x vario. ranges	3	12	3	parallel to the wireframes of each individual	10-130	130-150	60-125	20-40	N/A	N/A
	3	1.5 x vario. ranges	3	12	3	zones	10-130	260-300	120- 250	40-80	N/A	N/A
	1	0.5 x vario. ranges	4	12	3		145- 155	72.5- 82.5	50-80	10-15	N/A	N/A
BLN/BLS - BLS Upper/Lower Contact HG Zones	2	1.0 x vario. ranges	3	12	3	Variable Oritentation	145- 155	145-165	100- 160	20-30	N/A	N/A
Somuel no Zones	3	1.5 x vario. ranges	3	12	3		145- 155	290-330	200- 320	40-60	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	Oriented parallel to the	30	40	25	15	N/A	N/A
BLN/BLS - East Extension HG Zones	2	1.0 x vario. ranges	3	12	3	wireframes of each individual	30	80	50	30	N/A	N/A
	3	1.5 x vario.	3	12	3	zones	30	160	100	60	N/A	N/A

	10	Ellipsoid	Compo	site Para	meters	Edge Orientation				es (Base iriogram	High-Grade Restricted Search		
Grouped Zones/Envelope	Pass		Min Comp	Max Comp	Max Comp. /drill hole	Dip	Dip Azimuth	Pitch	Major (m)	Int.	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	1	0.5 x vario. ranges	4	12	3	_	riented	120	55	37.5	15	N/A	N/A
MWC - Martiniere Central HG Zones	2	1.0 x vario. ranges	3	12	3	wirefra	parallel to the wireframes of each individual		110	75	30	N/A	N/A
	3	1.5 x vario. ranges	3	12	3	zones		120	220	150	60	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	Oriented parallel to the wireframes of each individual		80	35	25	11	N/A	N/A
MWC - Martiniere West Steep HG Zones	2	1.0 x vario. ranges	3	12	3			80	70	50	22	N/A	N/A
	3	1.5 x vario. ranges	3	12	3		zones	80	140	100	44	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	_	riented	90	80	50	20	N/A	N/A
MWC - Martiniere West HG Zones	2	1.0 x vario. ranges	3	12	3		I to the imes of	90	160	100	40	N/A	N/A
	3	1.5 x vario. ranges	3	12	3	- Cacin into	zones	90	320	200	80	N/A	N/A
MWC - South	1	0.5 x vario.	4	12	3			160	50	37.5	15	N/A	N/A
Gabbro Contact HG Zone	2	1.0 x vario. ranges	3	12	3		Variable Oritentation		100	75	30	N/A	N/A
	3	1.5 x vario.	3	12	3			160	200	150	60	N/A	N/A

Grouped Zones/Envelope	Pass	Ellipsoid	Composite Parameters			Edge Orientation				es (Base riogram	High-Grade Restricted Search		
			Min Comp	Мах	Max Comp. /drill hole	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	1	0.5 x vario.	4	12	3	_	riented	50	60	25	20	N/A	N/A
MN - Martiniere North HG Zones	2	1.0 x vario. ranges	3	12	3	parallel to the wireframes of each individual	50	120	50	40	N/A	N/A	
	3	1.5 x vario. ranges	3	12	3	- Cuon me	zones	50	240	100	80	N/A	N/A
	1	0.5 x vario. ranges	4	12	3	_	riented	50	35	20	19	N/A	N/A
HF - Horsefly HG Zones	2	1.0 x vario. ranges	3	12	3	wirefra	parallel to the wireframes of each individual		70	40	38	N/A	N/A
	3	1.5 x vario. ranges	3	12	3		zones	50	140	80	76	N/A	N/A

14.2.9 Block Model Validation

The QPs performed visual and statistical validations to ensure that the final mineral resource block model was consistent with the primary data.

The volume of blocks for each code, attributed by high-grade zone or low-grade envelope, was compared with the volumes of the 3D wireframe models. The volume comparison did not identify any issues.

Block model grades, composite grades, and assays were visually compared on sections, plans and longitudinal views for densely and sparsely drilled areas. No significant differences were observed. A generally good match was noted in the grade distribution without excessive smoothing in the block model (Figure 14.12 as an example for Fenelon and Figure 14.13 as an example for Martiniere).

The trend and local variation of the estimated OK and ID2 models were statistically compared to the NN model and composite data using swath plots in three directions (sections along the X, Y and Z axes) for blocks interpolated by the first and second pass (swath plots along the X-axis for Fenelon and Martiniere are shown, as examples, in Figure 14.14 and Figure 14.15).

The comparison between composite and block grade distribution did not identify significant issues.

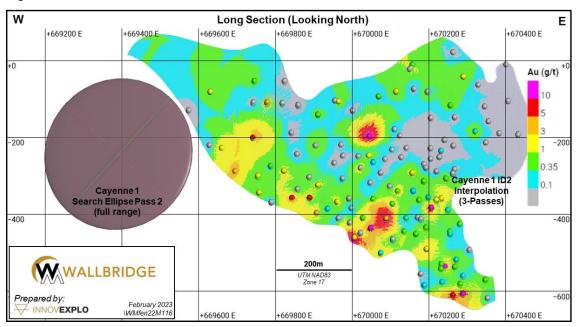


Figure 14.12 – Visual validation comparing drill hole composites and block model grade values (example of Cayenne 1 HG Zone, Fenelon deposit)

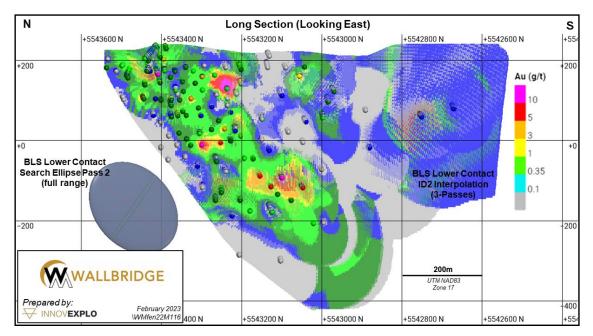


Figure 14.13 – Visual validation comparing drill hole composites and block model grade values (example of BLS Lower Contact HG Zone, Martiniere deposit)

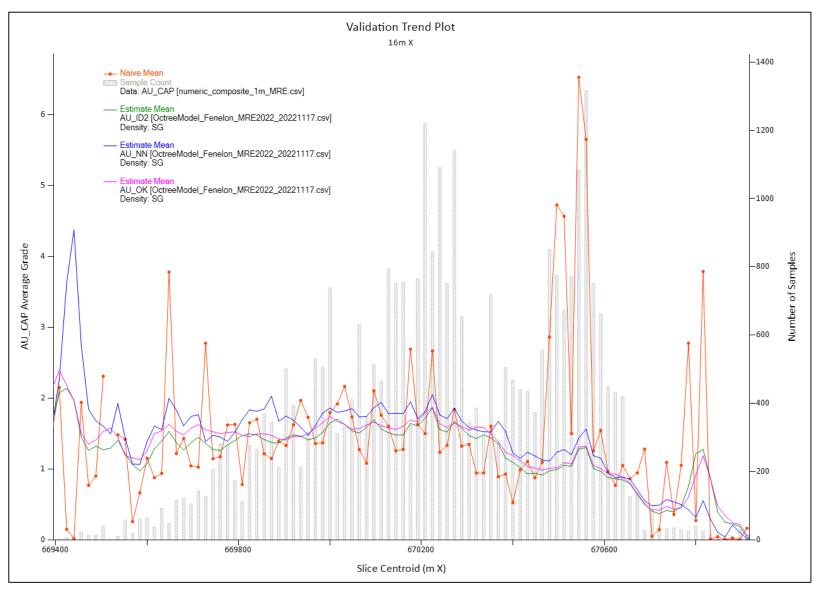


Figure 14.14 – High-grade zones swath plot comparison of block estimates along the X-axis (Fenelon deposit)

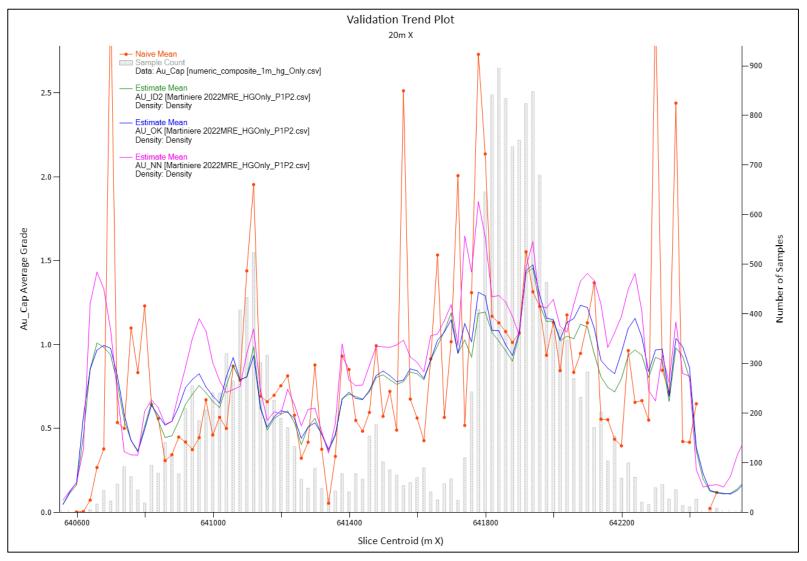


Figure 14.15 – High-grade zones swath plot comparison of block estimates along the X-axis (Martiniere deposit)

14.2.10 Mineral Resource Classification

The 2023 MRE comprises Indicated and Inferred mineral resources. The categories were prepared using a script in Edge. The resulting classifications were subsequently refined using a series of outline rings (clipping boundaries) to upgrade inferred blocks or downgrade indicated blocks. The QPs consider this a necessary step to homogenize the mineral resource volumes in each category and avoid including isolated blocks in the Indicated category.

The classification takes into account the following criteria:

- Interpolation pass
- Distance to closest information
- Number of drill holes used to estimate the block's grade

No measured mineral resources were defined.

The indicated category was assigned to blocks estimated in the first and second pass, with reasonable geological and grade continuity, with a minimum of two (2) drill holes in areas where the minimum distance from a drill hole is less than 35 m (and within a drill grid of at leat 3 drill holes) for the Martiniere deposit or the Tabasco-Cayenne zones of the Fenelon deposit, or less than 25 m (and within a drill grid of at leat 3 drill holes) for the Area 51, Ripley-Reaper and Gabbro zones.

The inferred category is defined for blocks estimated in the first and second pass, with reasonable geological and grade continuity, with a minimum of two (2) drill holes in areas where the minimum distance from a drill hole is less than 70 m (and within a drill grid of at leat 3 drill holes) for the Martiniere deposit or the Tabasco-Cayenne zones of the Fenelon deposit, or less than 50 m (and within a drill grid of at leat 3 drill holes) for the Area 51, Ripley-Reaper and Gabbro zones.

14.2.11 Economic Parameters and Cut-Off Grade

The economic parameters for the 2023 MRE were optimized by considering the synergy between the Martiniere and Fenelon deposits.

The cut-off grades ("COGs") for the Fenelon deposit are 0.45 g/t for the potential open-pit extraction scenario and 1.50 g/t Au for the potential underground extraction scenario. For Martiniere, a cut-off grade of 0.55 g/t is used for the potential open-pit extraction scenario and 2.40 g/t Au (Long-hole mining method) or 2.60 g/t Au (Cut and Fill mining method) for the potential underground extraction scenario.

The selected cut-off grades were calculated and then rounded using the parameters presented in Table 14.10.

The cut-off grades and parameters were used for the pit shell optimization (Whittle) and the underground stope optimization (Deswik Stope Optimizer or "DSO") to produce constraining volumes as conceptual mining shapes.

Cut-off grades should be re-evaluated in light of prevailing market conditions and other factors, such as gold price, exchange rate, mining method, related costs, etc.

Table 14.10 – Input parameters used to calculate the cut-off grades

Parameters	Unit	Value
Gold Price	US\$/oz	1600
Exchange Rate	CA\$/US\$	1.30
Fenelon		
Metallurgic Recovery	%	95.00
Mining Cost – Open Pit (Overburden)	CA\$/t	2.15
Mining Cost – Open Pit (Bedrock)	CA\$/t	5.50
Mining Cost – UG	CA\$/t milled	65.00
G&A Cost- Open Pit / UG	CA\$/t milled	9.20
Processing Cost- Open Pit / UG	CA\$/t milled	18.15
Calculated COG – Open Pit	Au g/t	0.45
Calculated COG – UG	Au g/t	1.50
Martiniere		
Metallurgic Recovery	%	96.00
Mining Cost – Open Pit (Overburden)	CA\$/t	2.15
Mining Cost – Open Pit (Bedrock)	CA\$/t	4.55
Mining Cost – UG (Long-hole)	CA\$/t milled	118.80
Mining Cost – UG (Cut & Fill)	CA\$/t milled	130.70
G&A Cost- Open Pit / UG	CA\$/t milled	9.20
Processing Cost- Open Pit / UG	CA\$/t milled	18.15
Calculated COG - Open Pit	Au g/t	0.55
Calculated COG – UG (Long-hole)	Au g/t	2.40
Calculated COG – UG (Cut & Fill)	Au g/t	2.60

For Fenelon, the DSO parameters used a mining shape of 10.0 m along the strike of the deposit, a height of 15.0 m to 20.0m (depending of the location of the stope in the deposit) and a width of 2.0 m. The typical shape was optimized first. If it was not potentially economical, smaller stope shapes were optimized until it reached the minimum mining shape (half the height of the typical shape).

For Martiniere, the DSO parameters, used for the potential long-hole mining method, used a mining shape of 10.0 m along the strike of the deposit, a height of 20.0m and a width of 2.0 m. The typical shape was optimized first. If it was not potentially economical, smaller stope shapes were optimized until it reached the minimum mining shape (half the height and full length along strike of the typical shape or full height and half of the length along strike of the typical shape). The DSO parameters, used for the potential cut and fill mining method, used a mining shape of 10.0 m along the strike of the deposit, a height of 4.0m and a width of 3.5 m. The typical shape was optimized first. If it was not potentially economical, smaller stope shapes were optimized until it reached the minimum mining shape (full height and half of the length along strike of the typical shape).

The use of those conceptual mining shapes as constraints to report mineral resource estimates demonstrates that the criterion of "reasonable prospects for eventual economic

extraction" has been met. The criterion is defined in the CIM Definition Standards on Mineral Resources and Reserves (CIM Definition Standards; May 10, 2014) and the CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (CIM MRMR Best Practice Guidelines; November 29, 2019).

14.2.12 Mineral Resource Estimate

The QPs are of the opinion that the 2023 MRE can be classified as Indicated and Inferred mineral resources based on geology, grade continuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The requirement of reasonable prospects for eventual economic extraction has been met by having a minimum width for the modelling of the mineralization zones and a cut-off grade, using reasonable inputs, both for potential open pit and underground extraction scenarios, and constraints consisting of a surface shape for the open-pit scenario and mineable shapes for the underground scenario.

The QPs consider the 2023 MRE reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards and CIM MRMR Best Practice Guidelines.

Figure 14.16 and Figure 14.17 show the classified mineral resources within the constraining volumes (optimized pits and DSOs) for the Martiniere and Fenelon deposit.

Table 14.11, Table 14.3 and Table 14.4 display the results of the 2023 MRE.

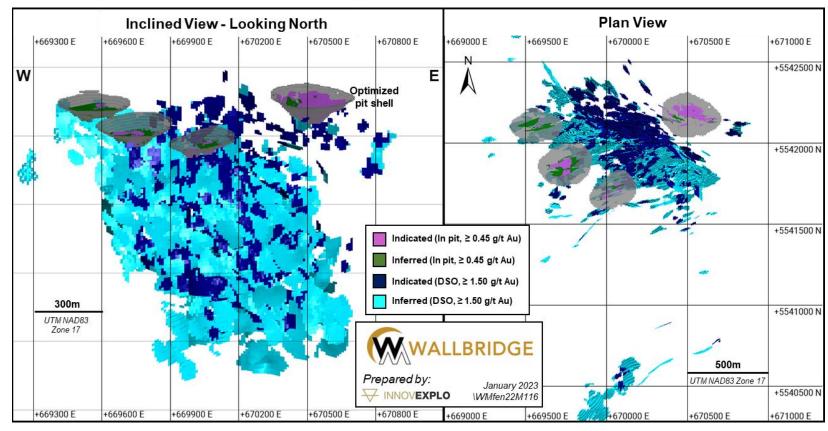


Figure 14.16 - Classified mineral resources within the constraining volumes for the Fenelon deposit

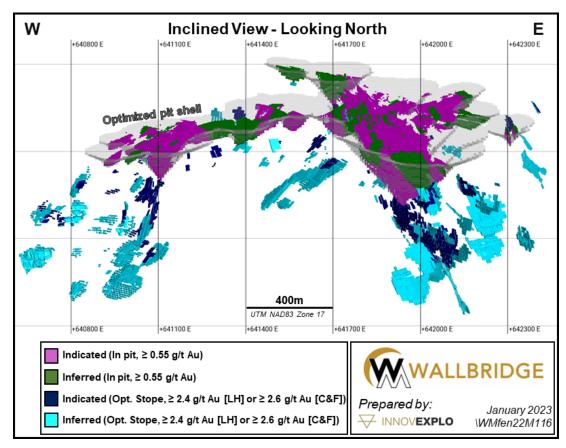


Figure 14.17 – Classified mineral resources within the constraining volumes for the Martiniere deposit

Table 14.11 - Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate (by deposit)

Deposit	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)	
	Indicated	In Pit > 0.45	727,400	4.46	104,400	2 260 600	
Fenelon	indicated	UG > 1.50	20,931,700	3.37	2,265,200	2,369,600	
reneion	Informed	In Pit > 0.45	303,900	4.08	39,800	1 710 100	
	Inferred	UG > 1.50	18,181,400	2.87	1,678,500	1,718,400	
	Indicated	In Pit > 0.55	7,757,700	2.14	534,100	684,300	
		UG (C&F) > 2.60	31,600	2.84	2,900		
Mortiniara		UG (LH) > 2.40	1,253,500	3.66	147,400		
Martiniere		In Pit > 0.55	2,652,400	1.83	156,400		
	Inferred	UG (C&F) > 2.60	215,200	2.96	20,500	632,300	
		UG (LH) > 2.40	3,327,300	4.26	455,400		

Deposit	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)
Total Indicated			30,701,900	3.09		3,054,000
Total Inferred			24,680,200	2.96		2,350,700

Table 14.12 - Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate - Fenelon deposit by zone

Fenelon	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Total (oz Au)
	Indicated	In Pit > 0.45	457,100	4.30	63,200	1,647,700
Tabasco- Cayenne	mulcaled	UG > 1.50	13,581,600	3.63	1,584,500	1,647,700
and Gabbro	Inferred	In Pit > 0.45	17,400	1.69	900	402 200
	inierrea	UG > 1.50	3,961,200	3.15	401,300	402,300
	Indicated	In Pit > 0.45	270,300	4.74	41,200	708,300
Arac 51	indicated	UG > 1.50	7,173,500	2.89	667,100	
Area 51		In Pit > 0.45	286,500	4.22	38,900	4 222 000
	Inferred	UG > 1.50	12,998,500	2.86	1,194,900	1,233,900
	Indicated	In Pit > 0.45	0	0.00	0	12 600
Ripley -	indicated	UG > 1.50	176,600	2.40	13,600	13,600
Reaper	lafa ma d	In Pit > 0.45	0	0.00	0	00.000
	Inferred	UG > 1.50	1,221,700	2.09	82,200	82,200
Total Indicated			21,659,100	3.40		2,369,600
Total Inferred			18,485,300	2.89		1,718,400

Table 14.13 – Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate – Martiniere deposit by zone

Martiniere	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)	
	Indicated	In Pit > 0.55	65,700	2.07	4,400	33,900	
Martiniere	indicated	UG (LH) > 2.40	271,900	3.38	29,600	33,900	
North	Inferred	In Pit > 0.55	174,800	1.77	10,000	46,800	
	inierrea	UG (LH) > 2.40	396,200	2.89	36,800	40,000	
		In Pit > 0.55	1,558,200	2.24	112,000		
	Indicated	UG (C&F) > 2.60	31,600	2.84	2,900	151,300	
Martiniere West and		UG (LH) > 2.40	342,500	3.31	36,500		
Central		In Pit > 0.55	742,300	1.59	38,000		
	Inferred	UG (C&F) > 2.60	215,200	2.96	20,500	259,600	
		UG (LH) > 2.40	1,628,200	3.84	201,100		
	Indicated	In Pit > 0.55	0		0	7,100	
Horoefly		UG (LH) > 2.40	68,200	3.25	7,100		
Horsefly	Inferred	In Pit > 0.55	0	_	0	0.500	
		UG (LH) > 2.40	23,200	3.41	2,500	2,500	
	Indicated	In Pit > 0.55	6,133,800	2.12	417,700	404.000	
Dug Laks	indicated	UG (LH) > 2.40	571,000	4.04	74,200	491,900	
Bug Lake	le formed	In Pit > 0.55	1,735,300	1.94	108,500	222 400	
	Inferred	UG (LH) > 2.40	1,279,800	5.22	214,900	323,400	
Total Indicated			9,042,800	2.35		684,300	
Total Inferred			6,194,900	3.17		632,300	

Notes to the Detour-Fenelon Gold Trend 2023 Mineral Resource Estimate:

- The independent and qualified persons ("QPs") for the 2023 MRE are Carl Pelletier (P.Geo.), Vincent Nadeau-Benoit (P.Geo.), Simon Boudreau (P.Eng.) and Marc R. Beauvais (P.Eng.), all of InnovExplo Inc. The 2023 RE follows CIM Definition Standards (2014) and CIM MRMR Guidelines (2019). The effective date of the Detour-Fenelon Gold Trend 2023 MRE is January 13, 2023.
- 2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.
- The QPs are not aware of any known environmental, permitting, legal, title-related, taxation, sociopolitical
 or marketing issues, or any other relevant issue, that could materially affect the potential development of
 mineral resources other than those discussed in the 2023 MRE.
- 4. For Fenelon, 112 high-grade zones and seven (7) low-grade envelopes were modelled in 3D to the true thickness of the mineralization. Supported by measurements, a density value of 2.80 g/cm3 was applied to the blocks inside the high-grade zones, and 2.81 g/cm3 was applied to the blocks inside the low-grade envelopes. High-grade capping was done on raw assay data and established on a per-zone basis, ranging between 25 g/t and 100 g/t Au for the high-grade zones, except for Chipotle and Cayenne 3 for which capping was set at 330 g/t Au, and between 4 g/t and 10 g/t Au for the low-grade envelopes. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed. A minimum mining width of 2 m was used for underground stope optimization.

- 5. For Martiniere, 75 high-grade zones and nine (9) low-grade envelopes were modelled in 3D to the true thickness of the mineralization. Supported by measurements, a density value of 2.83 g/cm3 was applied to the blocks inside the high-grade zones, except for the high-grade zones associated with massive sulphide intersections where a value of 3.00 g/cm3 was applied, and 2.81 g/cm3 was applied to the blocks inside the low-grade envelopes. High-grade capping was done on raw assay data and established on a per-zone basis, ranging between 25 g/t and 100 g/t Au for the high-grade zones and between 1 g/t and 6 g/t Au for the low-grade envelopes. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed. A minimum mining width of 2 m was used for underground stope optimization.
- 6. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to blocks (potential surface and underground extraction scenario) using Whittle and DSO and by the application of cut-off grades. The cut-off grade for the Fenelon deposit was calculated using a gold price of US\$1,600 per ounce; a CAD:USD exchange rate of 1.30; a refining cost of \$5.00/t; a processing cost of \$18.15/t; a mining cost of \$5.50/t (bedrock) or \$2.15/t (overburden) for the surface portion, a mining cost of \$65.00/t for the underground portion and a G&A cost of \$9.20/t. Values of metallurgical recovery of 95.0% and royalty of 4.0% were applied during the cut-off grade calculation. The cut-off grade for the Martiniere deposit was calculated using a gold price of US\$1,600 per ounce; a CAD:USD exchange rate of 1.30; a refining cost of \$5.00/t; a processing cost of \$18.15/t; a mining cost of \$4.55/t (bedrock) or \$2.15/t (overburden) for the surface portion, a mining cost of \$118.80/t for the underground portion using the longhole mining method (LH), a mining cost of \$130.70/t for the underground portion using the cut and fill mining method (C&F), a G&A cost of \$9.20/t and a transport-to-process cost of \$6.50/t. Values of metallurgical recovery of 96.0% and royalty of 2.0% were applied during the cut-off grade calculation. The cut-off grades should be re-evaluated in light of future prevailing market conditions (metal prices, exchange rate, mining cost, etc.).
- 7. Results are presented in situ. Ounce (troy) = metric tons x grade/31.10348. The number of tonnes and ounces was rounded to the nearest thousand. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations as per NI 43-101.

Table 14.14 and Table 14.15 show the gold price sensitivity analysis of the 2023 MRE. The reader is cautioned that the numbers provided in those tables should not be interpreted as a mineral resource statement. The reported quantities and grades at different cut-off grades are presented in situ and for the sole purpose of demonstrating the sensitivity of the mineral resource model to the selection of a reporting cut-off grade.

Table 14.14 – Gold price sensitivity analysis for the Detour-Fenelon Gold Trend 2023 MRE (Fenelon Deposit)

	Fenelon (All Zones)								
Gold Price (US\$/oz)	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	
Indicated Reso	ources								
1920	In Pit > 0.35	817,500	4.06	106,600	UG > 1.25	25,433,700	3.00	2,457,100	
1760	In Pit > 0.40	774,800	4.24	105,700	UG > 1.35	23,530,400	3.15	2,380,300	
1600	In Pit > 0.45	727,400	4.46	104,400	UG > 1.50	20,931,700	3.37	2,265,200	
1440	In Pit > 0.50	530,200	5.27	89,900	UG > 1.70	18,188,100	3.65	2,136,600	
1280	In Pit > 0.55	476,000	5.60	85,800	UG > 1.90	15,890,500	3.93	2,009,900	
Inferred Resou	irces								
1920	In Pit > 0.35	334,100	3.75	40,200	UG > 1.25	23,609,500	2.52	1,911,600	
1760	In Pit > 0.40	316,500	3.93	40,000	UG > 1.35	21,207,500	2.66	1,813,400	
1600	In Pit > 0.45	303,900	4.08	39,800	UG > 1.50	18,181,400	2.87	1,678,500	
1440	In Pit > 0.50	161,900	5.10	26,500	UG > 1.70	15,016,500	3.16	1,524,300	
1280	In Pit > 0.55	144,300	5.40	25,000	UG > 1.90	12,512,600	3.44	1,383,500	

Table 14.15 – Gold price sensitivity analysis for the Detour-Fenelon Gold Trend 2023 MRE (Martiniere Deposit)

	Martiniere (All Zones)							
Gold Price (US\$/oz)	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)
Indicated Reso	ources							
1920	In Pit > 0.45	11,912,200	1.87	715,400	UG (LH) > 2.00 UG (C&F) > 2.15	1,303,200	3.21	134,600
1760	In Pit > 0.50	9,741,100	1.99	622,100	UG (LH) > 2.20 UG (C&F) > 2.35	1,378,900	3.41	151,100
1600	In Pit > 0.55	7,757,700	2.14	534,100	UG (LH) > 2.40 UG (C&F) > 2.60	1,285,100	3.64	150,300
1440	In Pit > 0.60	6,568,100	2.24	472,100	UG (LH) > 2.70 UG (C&F) > 2.90	1,188,300	4.08	155,800
1280	In Pit > 0.65	5,546,900	2.38	424,700	UG (LH) > 3.05 UG (C&F) > 3.30	944,900	4.38	133,100
Inferred Resou	irces							
1920	In Pit > 0.45	5,456,700	1.57	275,900	UG (LH) > 2.00 UG (C&F) > 2.15	4,666,400	3.58	537,400
1760	In Pit > 0.50	3,507,500	1.66	187,700	UG (LH) > 2.20 UG (C&F) > 2.35	4,154,500	3.94	525,800
1600	In Pit > 0.55	2,652,400	1.83	156,400	UG (LH) > 2.40 UG (C&F) > 2.60	3,542,500	4.18	475,900
1440	In Pit > 0.60	1,885,200	1.97	119,400	UG (LH) > 2.70 UG (C&F) > 2.90	2,988,300	4.69	450,500
1280	In Pit > 0.65	1,316,100	2.13	90,200	UG (LH) > 3.05 UG (C&F) > 3.30	2,365,900	5.24	398,400

15. MINERAL RESERVE ESTIMATES

Not applicable at the current stage of the project.

16. MINING METHODS

Not applicable at the current stage of the project.

17. RECOVERY METHODS

Not applicable at the current stage of the project.

18. PROJECT INFRASTRUCTURE

Not applicable at the current stage of the project.

19. MARKET STUDIES AND CONTRACTS

Not applicable at the current stage of the project.

20. ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

Not applicable at the current stage of the project.

21. CAPITAL AND OPERATING COSTS

Not applicable at the current stage of the project.

22. ECONOMIC ANALYSIS

Not applicable at the current stage of the project.

23. ADJACENT PROPERTIES

As at the effective date of this Technical Report, the online GESTIM claims database shows several claim blocks under different ownerships around the Property (Figure 23.1). The information on these adjacent properties was obtained from the public domain and has not been verified by the QPs. Nearby mineralized occurrences are not necessarily indicative that the Property hosts similar types of mineralization. At the time of writing, the QPs were not aware of any active exploration activities in the immediate area of the Property that would be relevant to the Detour-Fenelon Gold Trend 2023 MRE.

The Detour Lake mine belonging to Agnico Eagle Mines Limited (formerly Kirkland Lake Gold prior to the merger of February 2022) is the most significant nearby mineral occurrence. The gold mine is approximately 15 km west of the Property boundary. The Detour Lake, West Detour and North Pit deposits represent a large orogenic gold system of 835 Mt @ 0.76 g/t Au totalling 20.4 Moz gold in the Proven and Probable category. These mineral reserves are reported using a variable optimized cut-off strategy with a minimum cut-off grade of 0.50 g/t Au (mineral reserves as of March 31, 2022; Agnico, 2022). The large Kirkland Lake Gold claim block also includes the Zone 58N gold deposit with mineral resources of 2.7 Mt @ 5.8 g/t Au for a total of 0.534 Moz gold in the Measured and Indicated category (Leite et al., 2020). The Detour Lake and Detour West deposits are hosted by the Deloro Assemblage near the SLDZ, while Zone 58N is close to the LDDZ.

Another significant mineral occurrence in the area is the Selbaie VMS deposit located 20 km south of the Property. This former BHP Billiton mine was closed in 2004 after achieving past production of 47.3 Mt @ 0.98% Cu, 1.98% Zn, 20 g/t Ag and 0.9 g/t Au (Voordouw and Jutras, 2018).

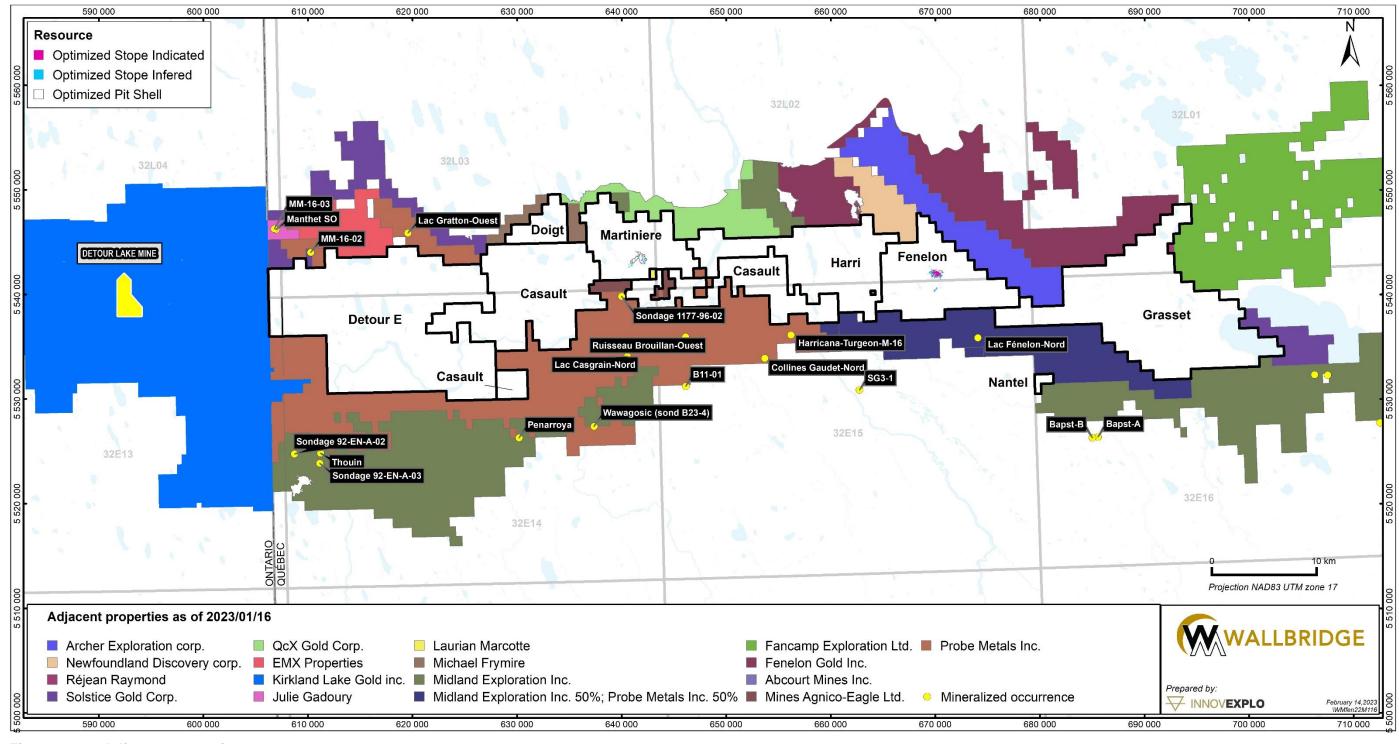


Figure 23.1 – Adjacent properties

24. OTHER RELEVANT DATA AND INFORMATION

Two different operators have carried out three bulk sampling programs on the Fenelon deposit (Gabbro Zones) for an aggregate total of 57,431 t at an average recovery grade of 14.62 g/t Au, yielding 26,905 ounces of gold.

Table 24.1 breaks down the bulk sample results by operator.

Table 24.1 - Bulk sample results

Operator	Year	From	Tonnes	Grade (g/t Au)	Ounces
Taurus	2001	Surface	13,752	9.60	4,245
Taurus	2004	Underground	8,169	10.25	2,595
Wallbridge	2018-2019	Underground	36,160	17.37	20,201
Total			58,081	14.48	27,041

Note: The average total grade may differ due to rounding.

25. INTERPRETATION AND CONCLUSIONS

The objective of InnovExplo's mandate was to prepare a Technical Report on Wallbridge's Detour-Fenelon Gold Trend land package (the "Property") to support the results of the updated mineral resource estimates for the Fenelon and Martiniere deposits (combined, the "Detour-Fenelon Gold Trend 2023 MRE").

The 2023 MRE was prepared using all available validated information and updated economic assumptions (i.e., metal prices, exchange rate, constraining volumes and surface and underground cut-off grades).

The Property provides the Issuer with an extensive district-scale land position over a 97-km east-west stretch of the Sunday Lake Deformation Zone ("SLDZ") in the northern part of the Abitibi Greenstone Belt. This Technical Report and the 2023 MRE herein meet the objectives of the assigned mandate.

The following conclusions were reached after conducting a detailed review of all pertinent information and completing the Detour-Fenelon Gold Trend 2023 MRE:

- The results demonstrate the geological and grade continuities for both gold deposits, Fenelon and Martiniere.
- The drill holes provide sufficient information for the mineral resource estimates of the 2 (two) deposits.
- In a combined scenario, the Fenelon deposit contains:
 - at a cut-off grade of 0.45 g/t Au for open-pit mining, an estimated Indicated mineral resource of 727,400 t grading 4.46 g/t Au for 104,400 oz Au and an estimated Inferred mineral resource of 303,900 t grading 4.08 g/t Au for 39,800 oz Au,
 - at, a cut-off grade of 1.50 g/t Au for underground, using long-hole stoping, an estimated Indicated mineral resource of 20,931,700 t grading 3.37 g/t Au for 2,265,200 oz Au and an estimated Inferred mineral resource of 18,181,400 t grading 2.87 g/t Au for 1,678,500 oz Au,
- In a combined scenario, the Martiniere deposit contains:
 - at a cut-off grade of 0.55 g/t Au for open-pit mining, an estimated Indicated mineral resource of 7,757,700 t grading 2.14 g/t Au for 534,100 oz Au and an estimated Inferred mineral resource of 2,652,400 t grading 1.83 g/t Au for 156,400 oz Au,
 - at, a cut-off grade of 2.40 g/t Au for underground, using long-hole stoping, an estimated Indicated mineral resource of 1,253,500 t grading 3.66 g/t Au for 147,400 oz Au and an estimated Inferred mineral resource of 3,327,300 t grading 4.26 g/t Au for 455,400 oz Au,
 - at, a cut-off grade of 2.60 g/t Au for underground, using the cut and fill mining method, an estimated Indicated mineral resource of 31,600 t grading 2.84 g/t Au for 2,900 oz Au and an estimated Inferred mineral resource of 215,200 t grading 2.96 g/t Au for 20,500 oz Au,
- Additional diamond drilling could upgrade some of the Inferred mineral resource to the Indicated category and could identify additional mineral resources down-plunge and in the vicinity of the current identified mineralization.

Table 25.1 identifies the significant internal risks, potential impacts and possible risk mitigation measures that could affect the economic outcome for the Property. The list

does not include the external risks that apply to all mining projects (e.g., changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.). Significant opportunities that could improve the economics, timing and permitting for the Property are identified in Table 25.2. Further information and studies are required before these opportunities can be included in the project economics.

The 2023 MRE is considered to be reliable and based on quality data and geological knowledge. The estimate follows 2014 CIM Definition Standards and 2019 CIM MRMR Best Practice Guidelines.

Table 25.1 – Risks for the Property

Risk	Potential Impact	Possible Risk Mitigation
Fenelon – Metallurgical recoveries are based on either small-scale testwork completed in Area 51 and Tabasco-Cayenne zones or larger scale testwork completed on the Gabbro Zones (high grade)	Recovery might differ negatively from what is currently assumed	Conduct additional metallurgical tests on the Tabasco-Cayenne zones, Area 51 zones and Ripley- Reaper Zones
Surface and underground geotechnical evaluations are not available for all deposits	Geotechnical challenge to mine the deposits, mining costs might differ negatively from what is currently assumed	Conduct geomechanical testing, geotechnical characterization and overburden characterization (for slope stability) to confirm rock quality and validate assumptions.
Social community licencing	Possibility that the population does not accept the mining project	Maintain a pro-active and transparent strategy to identify all stakeholders and maintain a communication plan. The main stakeholders have been identified, and their needs/concerns understood. Continue to organize information sessions, publish information on the mining project, and meet with host communities.
Proximity to the Harricana River (Martiniere Deposit) and wetlands	Mining costs might differ negatively from what is currently estimated for water inflow rates. Possibility that the population does not accept the mining project	Conduct hydrogeological assessment to better estimate water inflow rates. Conduct an environmental baseline study to evaluate potential environmental impact. Continue to organize information sessions, publish information on the mining project, and meet with host communities.

Table 25.2 – Opportunities for the Property

Opportunity	Explanation	Potential Benefit
Additional infill drilling on Fenelon	Would likely confirm and and improve confidence of the known zones, Area 51, Tabasco-Cayenne and Ripley-Reaper zones	Potential to increase mineral resources (and increase the indicated mineral resources by converting inferred mineral resources)
Exploration drilling on Fenelon	Opportunities to extend the mineralized zones	Potential to increase mineral resources
Additional infill drilling on Martiniere	Would likely confirm and and improve confidence of the known zones, especially the lateral extensions and at depth	Potential to increase mineral resources (and increase the indicated mineral resources by converting inferred mineral resources)
Exploration drilling on Martiniere	Opportunity to extend the mineralized zones	Potential to increase mineral resources
The Property is underexplored outside the known mineralized zones	The Property covers a significant length of the gold-prospective SLDZ and LDDZ. A large area of the Property is underlain by the Manthet Group volcanics, known to host VMS mineralization.	Potential for new discoveries

26. RECOMMENDATIONS

Based on the results of the 2023 MRE, the QPs recommend advancing the Fenelon and Martiniere deposits to an advanced phase of exploration. The QPs also recommend continuing the property-scale exploration program, including compilation studies, drill target generation, and drilling brownfield targets on other claim blocks.

The recommended two-phase work program is detailed below:

Phase 1:

- Engineering studies:
 - Continue advancing the engineering studies to gather geotechnical, metallurgical, environmental, and hydrogeological information (Fenelon and Martiniere).
- Complete a preliminary economic assessment ("PEA") using the 2023 MRE with (supported by) a NI 43-101 Technical Report. The purpose of the PEA will be to confirm, as a first step, the potential economic viability of the Fenelon Gold project, and it will also help prepare and prioritize the next steps (Phase 2) of the project.
- Exploration drilling Fenelon:
 - Further drilling should focus on testing the extensions of known gold zones, main host rocks (Jeremie Diorite and Main Gabbro) and structures recognized in controlling gold mineralization (Sunday Lake Deformation Zone, Jeremie Fault, and other secondary fault zones) with large-spaced step-outs or grassroots drill targets (geophysical and geochemical anomalies or geological and structural trends).
- Exploration work Martiniere:
 - Complete geophysical programs, field work, and technical studies to generate grassroots drill targets
- Exploration drilling Martiniere:
 - Further drilling should focus on testing the known gold trends and orehosting environments with large-spaced step-outs, as well as testing some property-wide grassroots drill targets.
- Exploration work and drilling Regional (other claim blocks of the Detour-Fenelon Gold Trend):
 - Further drilling should focus on testing some property-wide grassroots drill targets (geophysical and geochemical anomalies or geological and structural trends)

Phase 2 (contingent on the success of Phase 1):

- Infill and exploration drilling Fenelon (provision for follow-up on Phase 1).
- Infill and exploration drilling Martiniere (provision for follow-up on Phase 1).
- Complete an update of the MREs for the Fenelon and Martiniere deposits that will include the results of the recommended drilling programs from Phase 2.
- Complete a pre-feasibility study ("PFS") based on the updated mineral resource estimates, The purpose of the PFS will be to confirm the economic

viability of the Fenelon Gold and Martiniere Gold projects (as a synergy) and summarized in an updated NI 43-101 Technical Report.

26.1 Costs Estimate for Recommended Work

The QPs have prepared a cost estimate (in Canadian dollars) for the recommended twophase work program to serve as a guideline. The budget for the proposed program is presented in Table 26.1. Expenditures for Phase 1 are estimated at \$35.4 million (incl. 15% for contingencies). Expenditures for Phase 2 are estimated at \$39.3 million (incl. 15% for contingencies). The grand total is \$74.7 million (incl. 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

Table 26.1 – Estimated Costs for the Recommended Work Program

Phase 1	Work Program	Description	Budget Cost
	Engineering studies		\$3.0M
	PEA on the Detour-Fenelon Gold Trend		\$1.0M
	Exploration drilling – Fenelon	15,000 m	\$6.0M
	Exploration work – Martiniere		\$1.0M
	Exploration drilling – Martiniere	23,500 m	\$9.4M
	Exploration work – Regional		\$2.0M
	Exploration drilling – Regional	11,000 m	\$4.4M
	Contingencies (15%)		\$4.6M
	Phase 1 subtotal		\$35.4M
Phase 2	Work Program	Description	Budget Cost
	Infill and exploration drilling – Fenelon (provision for follow-up on Phase 1).	40,000 m	\$16.0M
	Infill and exploration drilling – Martiniere (provision for follow-up on Phase 1).	40,000 m	\$16.0M
	Update of the Detour-Fenelon Gold Trend MRE		\$0.2M
	PFS on the Detour-Fenelon Gold Trend		\$2.0M
	Contingencies (15%)		\$5.1M
	Phase 2 subtotal		\$39.3M
	TOTAL (Phase 1 and Phase 2)		\$74.7M

27. REFERENCES

- Abzalov, M, 2008, Quality Control of Assay Data: A Review of Procedures for Measuring and Monitoring Precision and Accuracy: Exploration and Mining Geology, Vol. 17, Nos. 3-4, p. 131-144.
- Agnico. (2022, July 27) Agnico Eagle Reports Second Quarter 2022 Results [Press Release] Retrieved from https://s21.q4cdn.com/374334112/files/doc_news/news_documents/2022/2022-Q2 AEM-Results 2022.07.27 Final.pdf
- Agnico, 2023. 2022 Q4 + Annual Report of Activities on the Deout East Property. 39 p...
- Bedeaux, P., Rafini, S., Pilote, P. and Daigneault, R. 2018. Modelling Seismically Induced Mesothermal Goldfields along the Deep-Rooted Cadillac-Larder Lake Fault, Abitibi, Canada. Geofluids. Volume 2018. P. 1-21.
- Bleeker, W., 2015. Synorogenic gold mineralization in granite-greenstone terranes: the deep connection between extension, major faults, synorogenic clastic basins, magmatism, thrust inversion, and long-term preservation. Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration. p.25-47.
- Brack, W., 1988. Lynx Canada Exploration Limited, Report on the 1987 Exploration Program, Massicotte Property in the Casa Berardi Area, GM46540, 68p.
- Brousseau, K., Pelletier, C., Carrier, A., and Théberge, L. 2007. 2005-2006 Winter Diamond Drilling Program, Fenelon Property, Fenelon Township, Province of Québec, Canada. Report prepared by InnovExplo Inc. for American Bonanza Corporation. 90 pages, GM 62991.
- Carter, J., 2020. Unraveling the Geological History of the Fenelon Gold Property and Relative Timing of Gold Mineralization, unpublished M.Sc. Thesis, University of Toronto, 53p.
- Castonguay, S., Dubé, B., Wodicka, N., and Mercier-Langevin, P., 2020. Geological Setting and Gold Mineralization Associated with the Sunday Lake and Lower Detour Deformation Zones, Northwestern Abitibi Greenstone Belt, Ontario and Québec; in Targeted Geoscience Initiative 5: Contributions to the Understanding of Canadian Gold Systems, (ed.) P. Mercier-Langevin, C.J.M. Lawley, and S. Castonguay; Geological Survey of Canada, Open File 8712, p. 127–142. https://doi.org/10.4095/323670
- Chamam, M., 2019, Induced polarization survey and configuration, Fenelon Project. By Abitibi Geophysics Inc. for Wallbridge Mining company limited, 32p.
- Crary, T., 2021, An Investigation into the Gold Recovery from New Fenelon Project Samples, Internal report prepared for Wallbridge Mining Limited by SGS Natural Resources, 259 p.
- DiLauro, P. A., and Dymov, I., 2014, An investigation into Bug Lake Composite, Internal report prepared for Balmoral by SGS Mineral Services, 75p.
- Faure, S., 2015, Prolongement de la faille Sunday Lake (mine Detour Gold, Ont.) au Québec et son potentiel pour les minéralisations aurifères et en métaux de base. Rapport CONSOREM 2013-02, 31 p.

- Faure, S., lund, M., and Beausoleil, C., 2020; NI 43-101 Technical Report for the Fenelon Gold Property, Québec, Canada, NI 43-101 Technical Report prepared for Wallbridge Mining Limited, 106p.
- Gaboury, D., 2019, Parameters for the formation of orogenic gold deposits, Applied Earth Science, 128:3, p. 124-133
- Kiavash P., 2020. UAV Aeromagnetic Survey Logistics Report. By Pionneer Exploration Consultants Ltd for Wallbridge Mining company limited, 22p.
- Kirkland Lake, 2022. Q4 & 2021 Annual Report of Activities on the Detour East Property, 400p.
- Lacroix 1990 Lacroix, S., 1990. Géologie de la région des rivières Turgeons et Théo, Ministère des Ressources naturelles MB 90-28, p. 25, 12 maps.
- Leite, A., Dupon, J.-F., Raizman, V., and Fournier, P. A., 2020. Detour Lake Operation, Ontario, Canada, NI 43-101 Technical Report on behalf of Kirkland Lake Gold Ltd., 367p.
- Lesher, C.M. and Keays R.R., 2002, Komatiite-associated Ni-Cu-PGE deposits: Geology, Mineralogy, Geochemistry and Genesis. in L Cabri, ed., *The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of the Platinum-Group Elements.* 54 edn, Canadian Institute Mineral Metallurgy Petroleum, pp. 579 618.
- Lustig, G. N., 2012b, Review of 2012 quality control results, Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 45p.
- Lustig, G. N., 2013, Review of quality control results 2013 Winter drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 36p.
- Lustig, G. N., 2014a, Review of quality control results 2013 Summer/Fall drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 41p.
- Lustig, G. N., 2014b, Review of quality control results 2014 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 45p.
- Lustig, G. N., 2015, Review of quality control results, 2015 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 50p.
- Lustig, G. N., 2017, Review of quality control results, 2016 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 50p.
- Lustig, G. N., 2018, , Review of quality control results, 2017 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 49p.
- Lustig, G. N., 2019, Review of assay quality control results, 2018 drill program, Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 53p.
- MacTavish, A., Wagner, D. and Vervaeke, J., 2017. Balmoral Resources Ltd., 2016 Drill Program Report, Detour East Property, Located in Townships of Massicotte, La Peltrie and Manthet, NTS 32E14, 32E13, 32L04, 32L03, GM 70057, 238p.

- Martin, C., 2015, Bug Lake gold trend metallurgical testwork report, Report for Balmoral Resources Ltd by Blue Coast Research Ltd, 29p.
- Morgan L.A., and Schulz K.J., Physical Volcanology of Massive Sulfide Deposits in Shanks III, P. and Thurston, R., eds., 2012, Volcanogenic Massive Sulfide Occurrence Model: U.S. Geological Survey Scientific Investigations Report 2010–5070–C, 345 p.
- Mumford, T.R. and Vooordow, R.J., 2017; 2017 Technical (NI 43-101) Report on The Martiniere Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 84 p.
- Myers, J.M. and Wagner D., 2020; 2020 Technical Report: The Fenelon Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 65p.
- Pelletier, C. and Nadeau-Benoit, V., 2021. NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada. Report prepared by InnovExplo Inc. for Wallbridge Mining Limited, 293p.
- Richard, P-L, Turcotte, B., Jalbert, C., Gourde, D., and Pelletier, P., 2017. NI-43 101 Technical Report on the Pre-Feasibility Study for the Fenelon Mine Property, NI-43 101 Technical Report prepared for Wallbridge Mining Company Ltd., 402p.
- Savard, C., Durieux, G., Beausoleil, C. and Carrier, A., 2021. NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Québec, Canada, NI43- 101 Technical Report prepared for Wallbridge Mining Limited, 187p.
- Poulsen, K.H., Robert, F., and Dubé B., 2000, Geological Classification of Canadian Gold Deposits, Geological Survey of Canada, Bulletin 540, 113 p.
- Slater, E., and Amaral, L., 2020. Découverte et développement le long du corridor aurifère Détout-Fenelon, la ceinture aurifère émergente de l'Abitibi, in Explo Abitibi 2020, 29p.
- Thurston, P.C., Ayer, J.A., Goutier, J., and Hamilton, M.A., 2008, Depositional Gaps in the Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Economic Geology, v. 103, p. 1097–1134.
- Tucker, M.J., and Tempest, R., 2018, 2018 Drill Program Report Grasset-Fenelon property. 1816 p.
- Voordow R. and Jutras, M., 2018; 2018 Technical (N.I. 43-101) Report on the Martiniere Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 113p.
- Welte-Kerne, B., and Johnston, H., 2012, Preliminary assessment of Detour Trend ore, Report prepared by ALS Metallurgy Kamloops for Equity Exploration Consultants Ltd, 41p.
- Welte-Kerne, B., and Johnston, H., 2013, Supplemental assessment of Detour Trend ore, Report prepared by ALS Metallurgy Kamloops for Balmoral Resources Ltd, 31p.
- Wallbridge website: https://wallbridgemining.com/

27.1 **GM (SIGÉOM)**

- GM 54144, Adam, D., 1996. Rapport d'une campagne de forage, propriété B01. Les Métaux Billiton Canada Inc, rapport statutaire; 101 pages, 14 plans.
- GM 43413, Alexander, D R., 1985. Diamond Drilling Log, Dls-Casault Group Property. Mines d'Or Queenston Ltée, rapport statutaire; 44 pages, 4 plans.
- GM 31188, Anderson, W J., 1975. Diamond Drill Record, Detour Property, Grid 10-52. Selco Mining Corp Ltd, rapport statutaire; 4 pages.
- GM 31965, Anderson, W J., 1975. Diamond Drill Record, Detour Property, Quesagami Lake Area. Selco Mining Corp Ltd, rapport statutaire; 8 pages, 4 plans.
- GM 31586, Anderson, W J., 1975. Summary Report, Grid 10-65. Selco Mining Corp Ltd, rapport statutaire; 2 pages, 2 plans.
- GM 32274, Anderson, W J., 1976. Diamond Drill Record, Detour Area. Selco Mining Corp Ltd, rapport statutaire; 6 pages, 4 plans.
- GM 36766, Anderson, W J., Chamois, P., 1980. Geophysical Report, Grids 10-54, 10-106. Selco Mining Corp Ltd, rapport statutaire; 10 pages, 7 plans.
- GM 31185, Anderson, W J., Hutton, D A., Reed, L., 1975. Geophysical Report Part I, Detour-Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 339 pages, 32 plans.
- GM 31186, Anderson, W J., Hutton, D A., Reed, L., 1975. Geophysical Report, Part II And Part III, Detour Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 45 pages, 44 plans.
- GM 31246, Anderson, W J., Reed, L., 1975. Geophysical Report, Detour Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 18 pages, 14 plans.
- GM 31244, Anderson, W J., Reed, L., 1975. Report Geophysical Surveys. Selco Mining Corp Ltd, rapport statutaire; 5 pages, 2 plans.
- GM 54740, B. Needham, M.B., 1997. 1997 Summary Exploration Report, for the Cyprus Canada Inc. Sunday Lake Property, rapport statutaire, 94 pages.
- GM 71351, Bédard, F., St-Cyr, R D., 2019. Rapport des travaux de forage 2018, propriété Casault. Exploration Midland Inc, rapport statutaire; 1627 pages.
- GM 44884, Beesley, T.J., 1986. Report on 1986 Exploration and Diamond Drilling Programs, Samson River Project, Gateford Resources Inc., rapport statutaire, 277 pages.
- GM 48757, Béland, S., 1989. Diamond Drilling Record, Lower Detour M-244 Property. Glen Auden Resources Ltd, rapport statutaire; 35 pages, 8 plans.
- GM 54701, Ben, M., 1997. Assessment Report, Martiniere C Property. Cyprus Canada Inc, rapport statutaire; 11 pages, 2 plans.
- GM 54818, Ben, M., 1997. Assessment Report, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 23 pages, 3 plans.
- GM 54648, Ben, M., Needham, B., 1997. 1997 Summary Exploration Report, Martigny A Property. Cyprus Canada Inc, rapport statutaire; 126 pages, 5 plans.
- GM 51589, Berthelot, P. Et De Corta, H., 1992. Campagne de sondages au diamant, propriété Enjalran-A, Serem Québec Inc., rapport statutaire, 49 pages.
- GM 55622, Bérubé, D., 1998. A Report on Geophysical Work, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 13 pages, 14 plans.

- GM 70674, Bérubé, P., Phaneuf, C., 2017. Rapport d'interprétation, levé OreVision, projet Casault. SOQUEM INC, EXPLORATION MIDLAND INC, rapport statutaire; 31 pages, 8 plans.
- GM 55422, Boileau, P., 1997. Levés géophysiques, propriété Fenelon. Explorations Fairstar Inc, rapport statutaire; 21 pages, 70 plans.
- GM 54906, Boileau, P., 1997. Levés géophysiques, propriété Gaudet. Explorations Mines du Nord Ltée, Claims Frigon, rapport statutaire; 8 pages, 24 plans.
- GM 53992, Boileau, P., Lapointe, D., 1996. Geophysical Surveys, Fenelon A Project. Cyprus Canada Inc, rapport statutaire; 12 pages, 163 plans.
- GM 54042, Boileau, P., Lapointe, D., 1996. Geophysical Surveys, Martiniere C, Martiniere D and La Peltrie C Projects. Cyprus Canada Inc, rapport statutaire; 16 pages, 30 plans.
- GM 67665, Boivin, M., 2013. Interpretation Report on a Helicopter-Borne Vtem / Mag Survey over the Casault Project (Block 1, 2 And 3). Exploration Midland Inc, rapport statutaire; 14 pages, 2 plans.
- GM 47195, Boniwell, J.V., 1987, Diamond Drilling Results, Late Fall Program 1987, rapport statutaire, 73 pages.
- GM 64011, Boulanger, O., Boucher, S., 2008. Rapport logistique et d'interprétation, Levés magnétométrique et électromagnétique EMH, Projet Jérémie, Bloc C. Claims Tremblay, Ressources Abitex Inc, Exploration Metauxdic, rapport statutaire; 16 pages, 7 plans.
- GM 44469, Boustead, G A., 1987. Report on Combined Helicopter-Borne Magnetic and Electromagnetic Survey, Gaudet Township. Expl Min Golden Triangle Inc, rapport statutaire; 31 pages, 6 plans.
- GM 44468, Boustead, G A., 1987. Report on Combined Helicopter-Borne Magnetic and Electromagnetic Survey, Lanoullier Township. Expl Min Golden Triangle Inc, rapport statutaire; 36 pages, 6 plans.
- GM 46476, Boustead, G A., 1987. Report on Combined Helicopter-Borne, Magnetic and Electromagnetic Survey, Massicotte / Manthet / Martigny / La Peltrie / Lanoullier Townships. Mines D'or Queenston Ltée, rapport statutaire; 52 pages, 24 plans.
- GM 44284, Bowen, R P., 1987. Report on the Property, La Peltrie Township. Ingamar Expls Ltd, rapport statutaire; 19 pages, 3 plans.
- GM 46540, Brack, W., 1988. Report on the 1987 Exploration Program, Massicotte Property. Explorations Lynx-Canada Ltée, rapport statutaire; 67 pages, 12 plans.
- GM 46137, Brereton, W E., Sobie, P., Sinclair, G P., Anderson, M., 1987. Report on a Program of Ground Geophysical Surveying and Reverse Circulation Drilling, Lac Garneau Property. Claims Mattew, Gunnar Gold Inc, Claims Ottereyes, rapport statutaire; 104 pages, 9 plans.
- GM 31645, Britton, J W., 1975. Geophysical Surveys on La Martiniere 2-74 Group. Noranda Expl Co Ltd, rapport statutaire; 2 pages, 2 plans.
- GM 32173, Britton, J W., 1976. Geophysical Surveys on Martigny 1-75 Group. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 2 plans.
- GM 52352, Broughton, D., 1993. Report on Winter 1993, Fenelon-A And Gaudet-C Diamond Drill Programs. Cyprus Canada Inc, rapport statutaire; 66 pages, 2 plans.

- GM 52084, Broughton, D., Needgham, B., 1993. Report on 1993 Lynx Project, Winter Drill Program. Cyprus Canada Inc, rapport statutaire; 202 pages, 11 plans.
- GM 47836, Bunner, D P., 1988. Assessment Report, Soil Sampling and VIf-EM Survey, Bertrand Claims. Ressources Westmin Ltée, rapport statutaire; 18 pages, 5 plans.
- GM 47225, Burk, R., 1988. Report on the Diamond Drilling Program. Glen Auden Resources Ltd, Royex Gold Mining Corp, Golden Dragon Resources Ltd, rapport statutaire; 46 pages, 4 plans.
- GM 55878, Calhoun, R., 1998. Report ff Activities, Diamond Drilling, Detour Lake East Property. Shield Geophysics Ltd, rapport statutaire; 41 pages, 5 plans.
- GM 44666, Campbell, R A., 1987. Report on the Airborne Geophysical Survey on the Property Of Vic Audet. Claims Bertrand, rapport statutaire; 13 pages, 2 plans.
- GM 11354, Caron, G G., Miller, R J., 1961. Diamond Drill Record. Paudash Mines Ltd, rapport statutaire; 20 pages, 1 plan.
- GM 37078, Chamois, P., 1980. Diamond Drill Record. Selco Mining Corp Ltd, rapport statutaire; 3 pages.
- GM 40163, Chartre, E., 1983. Levés géophysiques, projet Jérémie 1-82. Explorations Noranda Ltée, rapport statutaire; 9 pages, 7 plans.
- GM 55617, Chartre, E., 1998. Levés géophysiques, Canton Jérémie Grille Ouest. Claims Frigon, rapport statutaire; 11 pages, 4 plans.
- GM 69229, Chemam, C., 2015. Levé de gradiométrie magnétique héliporte de haute résolution, projet Casault bloc no. 3. Exploration Midland Inc, rapport statutaire; 16 pages, 5 plans.
- GM 70908, Chemam, M., 2018. Levé OreVision, projet Casault. EXPLORATION MIDLAND INC, SOQUEM INC, rapport statutaire; 38 pages, 23 plans.
- GM 59037, CHENARD, D., 2001. Rapport des travaux hiver 2001, propriété Lac Gignac. Ressources Minières Radisson Inc, rapport statutaire; 406 pages, 13 plans.
- GM 45982, Chevalier, A., 1987. Diamond Drilling Logs, La Peltrie Project. Expl Min Golden Triangle Inc, rapport statutaire; 206 pages, 1 plan.
- GM 11087-B, Christopher, I C., 1959. 1 Plan of Magnetic and Electromagnetic Surveys with DDH Location. Monpre Mining Co Ltd, rapport statutaire; 1 plan.
- GM 09755, Christopher, I C., 1959. Airborne Electromagnetic Survey on Properties in Turgeon River Area. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 6 pages, 1 plan.
- GM 09754, Christopher, I C., 1960. Report on Ground Electromagnetic Survey. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 4 pages, 1 plan.
- GM 08217-A, Christopher, I C., Seigel, H O., 1959. Report on Airborne Electromagnetic Survey. Kateri Mining Co Ltd, rapport statutaire; 18 pages, 2 plans.
- GM 67737, Corriveau, C., 2013. Rapport des travaux de forage 2013, propriété Casault. Exploration Midland Inc, rapport statutaire; 187 pages, 16 plans.
- GM 32804, Coutu, M R., Douglas, G., Moore, C M., 1977. Diamond Drill Log, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 27 pages, 1 plan.
- GM 32806, Coutu, M R., Rowe, J., 1977. Diamond Drill Record, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 45 pages, 1 plan.

- GM 55859, Daigle, R J., Mackenzie, C D., 1997. Report ff Work, 1997 Diamond Drilling Program, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 76 pages, 2 plans.
- GM 54064, De Cabissole, B., De Corta, H., 1996. Rapport d'une campagne de forage et de polarisation provoquée, propriété B04. Les Métaux Billiton Canada Inc, rapport statutaire; 19 pages, 8 plans.
- GM 55411, De Corta, H., De Cabissole, B., 1997. Rapport d'une campagne de forage et de polarisation provoquée, propriété B01. Les Métaux Billiton Canada Inc, rapport statutaire; 40 pages, 9 plans.
- GM 41575, Des Rivières, J., 1984. Rapport des levés géologiques de la propriéte La Martiniere 1-83. Explorations Noranda Ltée, rapport statutaire; 65 pages, 5 plans.
- GM 42615, Des Rivières, J., 1985. Rapport géologique et de sondage de la propriétée La Martiniere 1. Explorations Noranda Ltée, rapport statutaire; 43 pages, 6 plans.
- GM 45980, DIAMOND DRILL LOGS 1986-87 Programme, Les Explorations Noramco Inc. et Exploration Minière Golden Triangle Inc., rapport statutaire, 644 pages.
- GM 44072, DIAMOND DRILLING LOG, DLS-Gratton Group Property, rapport statutaire, 71 pages.
- GM 44767, Donner, K., 1986. Drill Hole, Turgeon East Group. Mines d'or Queenston Ltée, rapport statutaire; 246 pages, 23 plans.
- GM 46412, Donner, K., 1987. Diamond Drill Report, Turgeon East Property. Mines d'or Queenston Ltée, rapport statutaire; 85 pages, 11 plans.
- GM 71718, Dubé, J., 2020. Technical Report, High-Resolution Heliborne Magnetic Survey, Detour property. PROBE METALS INC, rapport statutaire; 27 pages, 4 plans.
- GM 55489, Dubé, J., Glass, F., 1997. A Report on Geophysical Work, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 14 pages, 17 plans.
- GM 69554, Dubois, M., 2016. Levés magnétométriques et Orevision®, projet Casault Grille Sw Et A. Exploration Midland Inc, rapport statutaire; 55 pages, 13 plans.
- GM 69779, Dubois, M., 2016. Rapport d'interprétation, Levé Orevision, projet Casault. Exploration Midland Inc, rapport statutaire; 31 pages, 7 plans.
- GM 70339, Dubois, M., 2017. Levés magnétométriques et OreVision, projet Casault. EXPLORATION MIDLAND INC, SOQUEM INC, rapport statutaire; 81 pages, 9 plans.
- GM 68909, Dubois, M., Card, D., 2014. Rapport d'interprétation, levés Mag et TDEM de surface, projet Casault. Exploration Midland Inc, rapport statutaire; 16 pages, 70 plans.
- GM 69696, Dufresne, R., Scott, A., 2016. Induced Polarization Survey Report, Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 45 pages, 21 plans.
- GM 48959, Duplessis, D., 1980. Rapport annuel, projet Wawagosic 210-1380-11. S D B J, rapport statutaire; 28 pages.
- GM 37488, Duplessis, D., 1980. Travaux de l'été 1980, projet Wawagosic. S D B J, rapport statutaire; 26 pages, 39 plans.

- GM 39931, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Casault Lake Property. Mines d'or Queenston Ltée, rapport statutaire; 23 pages, 2 plans.
- GM 39928, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Lac du Doigt Property. Mines d'or Queenston Ltée, rapport statutaire; 22 pages, 3 plans.
- GM 39929, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Lac Laporte Property. Mines d'or Queenston Ltée, rapport statutaire; 21 pages, 3 plans.
- GM 67664, Fiset, N., Han, Z., Prikhodko, A., 2013. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (Vtem Plus) and Horizontal Magnetic Gradiometer Geophysical Survey, Casault Project, Block 1, Block 2 And Block 3. Exploration Midland Inc, rapport statutaire; 58 pages, 8 plans.
- GM 67280, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, Martiniere Property. Balmoral Resources Ltds, rapport statutaire; 65 pages, 12 plans.
- GM 66714, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, East Doight Property. Balmoral Resources Ltd, rapport statutaire; 62 pages, 8 plans.
- GM 66710, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, Harricana Property. Balmoral Resources Ltd, rapport statutaire; 64 pages, 12 plans.
- GM 48553, Foy, S., Lacroix, R., Bernard, J., 1988. Rapport des travaux, campagne d'exploration 1988, propriétée Turgeon. Ressources Minières Coleraine Inc, rapport statutaire; 277 pages, 30 plans.
- GM 32507, Fraser, R J., 1976. Diamond Drill Core Log, Massicotte 4-74 Property (Detour Lake Area). Noranda Expl Co Ltd, rapport statutaire; 4 pages, 1 plan.
- GM 27181, Gallop, A M., 1971. Borehold Record, Property Burntbush. Canadian Nickel Co Ltd, rapport statutaire; 5 pages, 1 plan.
- GM 47226, Garner, D., 1988. Diamond Drilling Program. Golden Dragon Resources Ltd, Glen Auden Resources Ltd, rapport statutaire; 96 pages.
- GM 62862, Giguère, E., 2006. Rapport de la campagne de forage 2006, propriété La Martiniere. Cyprus Canada Inc, rapport statutaire; 319 pages, 13 plans.
- GM 33119, Giroux, H., 1977. Diamond Drill Core Log, Martigny 1-75 Property. Noranda Expl Co Ltd, rapport statutaire; 1 page, 1 plan.
- GM 41440, Giroux, M., 1984. Rapport des levés électromagnétique et magnétique, projet Bug Lake Showing. Explorations Noranda Ltée, rapport statutaire; 5 pages, 3 plans.
- GM 42382, Giroux, M., 1985. Rapport levé magnétométrique, projet Bug Lake Showing. Explorations Noranda Ltée, rapport statutaire; 5 pages, 1 plan.
- GM 42183, Gittings, F W., 1985. Diamond Drilling Log, Lemieux Property. Mines d'or Queenston Ltée, rapport statutaire; 10 pages, 2 plans.

- GM 55538, Glass, F., Dubé, J., 1997. A Report on Geophysical Work, Martigny a Property. Cyprus Canada Inc, rapport statutaire; 13 pages, 7 plans.
- GM 54907, Goettel, T., 1997. Report on the 1997 Diamond Drilling Program, Gaudet Property. Explorations Mines Du Nord Ltée, CLAIMS FRIGON, rapport statutaire; 46 pages.
- GM 10898, Grady, J C., 1959. 3 Diamond Drill Hole DH Logs with Assay Results. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 17 pages, 2 plans.
- GM 50097, Graham, R.J., 1990. Geophysical Surveys, Val St.Gilles Gold Property, First Standar Mining, rapport statutaire, 9 pages.
- GM 31660, Graham, W F., 1975. Report on Geological Mapping of Massicotte 4-74. Noranda Expl Co Ltd, rapport statutaire; 4 pages, 1 plan.
- GM 69487, Guay, M., and Riopel, J., 2015. Rapoprt de forage 2015, Adventure Gold, rapport statutaire, 166 pages.
- GM 69178, Guay, M., and Riopel, J., 2015. Rapport de prospection, été 2015, Adventure Gold, rapport statutaire, 91 pages.
- GM 69733, Guay, M., Riopel, J., Tremblay, E., 2016. Rapport de la campagne de forage 2016, projet Detour Nord, propriété Manthet, Manthent Extension et Mantigny, 32L03 et 32L04, Canton Manthet et Martigny, Québec, rapport statutaire 172 pages.
- GM 58073, Guy, K., 2000. 2000 Report On Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 97 pages, 14 plans.
- GM 52617, Guy, K., Green, K., 1994. Report on 1994 Lynx Project, Winter Drill Program. Cyprus Canada Inc, rapport statutaire; 86 pages, 1 plan.
- GM 52701, Guy, K., Green, K., 1994. Report on 1994 Rambo Project Winter Drilling Program. Ressources Minières Coleraine Inc, rapport statutaire; 24 pages, 1 plan.
- GM 41657, Hillier, D., 1984. Geological Report on the Dugas Creek Property. Ingamar Expls Ltd, I X Resources Ltd, rapport statutaire; 17 pages, 2 plans.
- GM 41656, Hillier, D., 1984. Geological Report on the Lac Geoffrion Property. Ingamar Expls Ltd, rapport statutaire; 16 pages, 2 plans.
- GM 43451, Hodges, C., 1986. Assessment Report, Harricana East Property. Expl Min Golden Triangle Inc, rapport statutaire; 19 pages, 10 plans.
- GM 45304, Hodges, D G., 1987. Report on the Property, Massicotte-Lower Detour. Claims Passi, Claims Jones, rapport statutaire; 17 pages, 5 plans.
- GM 46083, Hodges, G., 1987. Interpretation Report. Glen Auden Resources Ltd, rapport statutaire; 26 pages, 20 plans.
- GM 39226, Hubert, A L., 1982. Photo-Geology of Vrs Bedrock and Unconsolidated Turgeon Project. Denison Mines Ltd, rapport statutaire; 24 pages, 2 plans.
- GM 41438, Hughes, T N J., Fox, J., 1984. Diamond Drill Log, Gaudet-Beschefer Property. Teck Expls Ltd, rapport statutaire; 172 pages.
- GM 44045, Hugues, N A., Webster, B., 1986. Report on Ground Geophysical Surveys Conducted on the Xanaro Grid. Xanaro Technologies Inc, Expl Min Golden Triangle Inc, rapport statutaire; 27 pages, 11 plans.
- GM 44282, Hutteri, H P., 1986. Report on the Base/Precious Metal Potential of the La Peltrie Township Property. Ingamar Expls Ltd, rapport statutaire; 13 pages.

- GM 56816, Jeffery, B D., 1999. 1999 Report on Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 125 pages, 10 plans.
- GM 53674, Jiang, X D., 1995. 1995 Gaudet C Diamond Drill Report. Cyprus Canada Inc, rapport statutaire; 44 pages, 5 plans.
- GM 53923, Jiang, X D., 1996. Diamond Drill Report, 1996 Gaudet C. Cyprus Canada Inc, rapport statutaire; 81 pages, 8 plans.
- GM 55564, Kelly, D., 1996. Rapport de qualification, propriété Lac Gignac. Ressources Minières Radisson I, rapport statutaire; 33 pages, 6 plans.
- GM 50673, Kenwood, J., 1991. Report of HLEM and Total Field Magnetics Surveys, Gaudet "C" Property. Total Energold Corp, rapport statutaire; 13 pages, 11 plans.
- GM 50567, Kenwood, J., 1991. Report of HLEM and Total Field Magnetics Surveys, Gaudet-B Property. Total Energold Corp, rapport statutaire; 10 pages, 3 plans.
- GM 50524, Kenwood, J., 1991. Report on HLEM and Total Field Magnetics Surveys, Gaudet A Property. Total Energold Corp, Minéraux Morrison Ltée, rapport statutaire; 11 pages, 6 plans.
- GM 44258, Khobzi, A., Beauregard, A J., Boisvert, G J., Foy, S., 1986. Rapport de travaux réalisés en 1986 sur la propriété Massicotte. Exploration Essor Inc, rapport statutaire; 78 pages, 3 plans.
- GM 45607, Khobzi, A., Foy, S., 1987. Rapport de travaux, projet Turgeon. Exploration Rambo Inc, rapport statutaire; 223 pages, 14 plans.
- GM 31955, Krause, B W., 1976. Magnetic and Electromagnetic Survey Report. Canadian Nickel Co Ltd, rapport statutaire; 10 pages, 2 plans.
- GM 66347, Kwan, K., Legault, J., Prikhodko, A., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (VTEM) and Horizontal Magnetic Gradiometer Geophysical Survey, Casault Property. Exploration Midland Inc, rapport statutaire; 55 pages, 10 plans.
- GM 54178, Lambert, G., 1995. Report on Ground Geophysical Investigation: Induced Polarization Surveys, Turgeon West Project. Placer Dome Inc, rapport statutaire; 10 pages, 41 plans.
- GM 67617, Lambert, G., 2013. Levés de magnétométrie et de polarisation provoquée, projet Lac Casault, Grille Turgeon Centre. Exploration Midland Inc, rapport statutaire; 17 pages, 10 plans.
- GM 67738, Lambert, G., 2013. Levés de polarisation provoquée, projet Lac Casault. Exploration Midland Inc, rapport statutaire; 16 pages, 12 plans.
- GM 45981, Lambert, G., Turcotte, R., 1987. Geophysical Survey, Harricana East 1437 Project. Expl Min Golden Triangle Inc, rapport statutaire; 10 pages, 15 plans.
- GM 47615, Landry, A C., 1987. Diamond Drill Log, Harricana East (P-1437) Property. Expl Min Golden Triangle Inc, rapport statutaire; 284 pages, 29 plans.
- GM 46175, Landry, A C., 1987. Diamond Drill Log, Harricana East (P-1437) Property. Expl Min Golden Triangle Inc, rapport statutaire; 284 pages, 29 plans.
- GM 70013, Larivière, J F., Bourassa, S., Masson, M., 2016. Rapport des travaux de forage 2015-2016, propriété Casault. Soquem Inc, Exploration Midland Inc, rapport statutaire; 1208 pages.

- GM 42421, Lavoie, C., 1985. Levés magnétique et de polarisation provoquée, projet Bug Lake Showing La Martiniere . Explorations Noranda Ltée, rapport statutaire; 12 pages, 4 plans.
- GM 46076, Lavoie, C., 1987. Leves Geophysique Propriete de Exploration Noranda, Projet Martiniere, Canton Martiniere, rapport statutaire, 8p.
- LAVOIE, C., 1987. Levés géophysiques, projet La Martiniere . Explorations Noranda Ltée, rapport statutaire; 7 pages, 3 plans."
- GM 46279, Lavoie, C., Plante, L., 1988. Levé de polarisation provoquée, projet La Martiniere . Explorations Noranda Ltée, rapport statutaire; 15 pages, 16 plans.
- GM 64281, Le Grand, M., 2009. Rapport sur la Campagne de forage au diamant, propriété Martiniere. American Bonanza Gold Corporation, rapport statutaire; 268 pages, 14 plans.
- GM 38110, Lee, H A., 1980. Photo-Geology of Detour-Turgeon Projects. Western Mines Ltd, Ressources Westmin Ltée, rapport statutaire; 25 pages, 2 plans.
- GM 45979, Legault, M H., 1987. Diamond Drill Logs 1986-87 Programs P-1437 Harricana East Project. Expl Min Golden Triangle Inc, rapport statutaire; 468 pages, 1 plan.
- GM 47623, Legault, M H., Landry, A C., 1988. Diamond Drill Log, La Peltrie (P-1428) Property. Expl Min Golden Triangle Inc, rapport statutaire; 325 pages, 24 plans.
- GM 18183, Leigh, O., 1966. Diamond Drill Record. Kesagami Synd, rapport statutaire; 40 pages, 1 plan.
- GM18183 , Leigh, O., 1966. Diamond Drill Record. Kesagami Synd, rapport statutaire; 40 pages, 1 plan.
- GM 66346, Letourneau, O., PAUL, R., 2011. Helicopter-Borne Geomagnetic Survey, Data Acquisition Report, Casault Project. Exploration Midland Inc, rapport statutaire; 29 pages, 7 plans.
- GM 69063, Loader, T., Dubois, M., 2015. Levés de magnétométrie et de résistivité/polarisation provoquée Orevision®, projet Casault Grille Nord. Exploration Midland INC, rapport statutaire; 31 pages, 38 plans.
- GM 69064, Loader, T., Dubois, M., 2015. Levés Mag-GPS et PP-Orevision®, projet Casault, Grille Sud. Exploration Midland Inc, rapport statutaire; 45 pages, 32 plans.
- GM 46855, Lortie, P., 1988. Induced Polarization Survey, Harricana East Property, Project 1437. Expl Min Golden Triangle Inc, rapport statutaire; 20 pages, 20 plans.
- GM 53651, Lortie, P., 1995. Geophysical Surveys, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 9 pages, 23 plans.
- GM 53653, Lortie, P., 1995. Geophysical Surveys, Jérémie B And Jérémie C Projects. Cyprus Canada Inc, rapport statutaire; 10 pages, 17 plans.
- GM 53652, Lortie, P., Boileau, P., 1995. Geophysical Surveys, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 13 pages, 29 plans.
- GM 35999, Macisaac, N., 1976. Diamond Drill Core Log. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32041, Mactavish, R O., 1976. Electromagnetic Survey of Group A, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.

- GM 32042, Mactavish, R O., 1976. Electromagnetic Survey of Group B, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31958, Mactavish, R O., 1976. Electromagnetic Survey of Group D, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31959, Mactavish, R O., 1976. Electromagnetic Survey of Group E, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31960, Mactavish, R O., 1976. Electromagnetic Survey of Group F, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32046, Mactavish, R O., 1976. Electromagnetic Survey of Group N, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32047, Mactavish, R O., 1976. Electromagnetic Survey of Group O, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 37394, Mactavish, R O., Sullivan, J A., 1981. Diamond Drill Log. Canadian Merrill Ltd, Hudson Bay Expl & Dev Co Ltd, Francana Oil & Gas Ltd, rapport statutaire; 13 pages, 1 plan.
- GM 55499, Masson, M W., 1997. 1997 Report on Diamond Drilling, La Peltrie C Property. Cyprus Canada Inc, rapport statutaire; 85 pages, 4 plans.
- GM 55490, Masson, M W., 1997. 1997 Report on Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 206 pages, 8 plans.
- GM 68987, Masson, M., 2015. Rapport des travaux de forage 2015, propriété Casault (Bloc Central). Exploration Midland Inc, rapport statutaire; 63 pages.
- GM 69701, Masson, M., 2016. Rapport des travaux de forage 2016, propriété Casault. Exploration Midland Inc, rapport statutaire; 102 pages, 2 plans.
- GM 66854, Masson, M., Bourassa, S., Gbaguidi, G., Kamta, G., 2012. Rapport des travaux de forage 2012, propriété Casault. Exploration Midland Inc, rapport statutaire; 507 pages, 20 plans.
- GM 69778, Masson, M., Larivière, J F., Bourassa, S., 2016. Rapport des travaux de forage, propriété Casault. Exploration Midland INC, rapport statutaire; 429 pages, 5 plans.
- GM 53727, McCrae, M., Needham, B., 1995. 1995 Jérémie a Diamond Drill Report. Cyprus Canada Inc, rapport statutaire; 77 pages, 13 plans.
- GM 43386, McCurdy, S E., 1986. A Report on Geophysical Surveys Conducted in Lanouiller Township. Expl Min Golden Triangle Inc, rapport statutaire; 29 pages, 29 plans.
- GM 56041, McNichols, D., 1998. Rapport sur le programme de forages, hiver 1998, propriété Lac Gignac. Ressources Minières Radisson I, rapport statutaire; 503 pages, 18 plans.
- GM 54389, Mercier, D., De Corta, H., and Cabissole, B., 1997. Rapport d'une campagne de forage, propriété SG3, Les Métaux Billiton Canada Inc., rapport statutaire, 170 pages.
- GM 55270, Michaud, P., Taner, M F., 1997. Journaux de sondage. Les Métaux Billiton Canada Inc, rapport statutaire; 82 pages, 12 plans
- GM 33366, Misiura, J D., 1977. Geological Report on La Martiniere 2-74. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 1 plan.

- GM 63647, Moreau, B., Moreau, A., 2008. Interprétation ttructurale, projet Massicotte. Ressources Minières Radisson Inc, rapport statutaire; 20 pages.
- GM 42169, Morissette, P., Andersen, E O., 1984. Rapport de levé géophysique, propriété Casault. Mines d'or Queenston Ltée, rapport statutaire; 3 pages, 4 plans.
- GM 42172, Morissette, P., Andersen, E O., 1984. Rapport de levé géophysique, propriété Du Doigt. Mines d'or Queenston Ltée, rapport statutaire; 4 pages, 4 plans.
- GM 51785, Needham, B., 1993. Diamond Drilling Holes, La Peltrie Property. Cyprus Canada Inc, rapport statutaire; 49 pages, 2 plans.
- GM 52083, Needham, B., 1993. Summary Report, La Peltrie Property. Cyprus Canada Inc, rapport statutaire; 299 pages, 12 plans.
- GM 55537, Needham, B., Ben, M., Masson, M., 1997. 1997 Martigny a Prospecting and Diamond Drill Program. Cyprus Canada Inc, rapport statutaire; 116 pages, 5 plans.
- GM 64141, Neron, P., Boulianne, D., Boivin, M., 2008. Rapport de compilation et travaux de 2008, propriété Massicotte. Ressources Minières Radisson Inc, rapport statutaire; 264 pages, 2 plans.
- GM 70591, Newton, A., Vervaeke, J., 2018. 2017 Drill Program Report, Detour East Property. BALMORAL RESOURCES LTD, rapport statutaire; 668 pages, 1 plan.
- GM 08217-B, Paudash Lake Uranium Mines Ltd, 1963. 1 Plan of Airborne Magnetic Survey, rapport statutaire; 1 plan.
- GM 24929, Penarroya Canada Ltée, 1969. Journal de sondage, permis Wawagosic. rapport statutaire; 22 pages.
- GM 68187, Perk, N., Peat, C., Letourneau, M., 2014. 2013 Diamond Drilling Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 74 pages.
- GM 67370, Perk, N., Peat, C., Treat, R., Swanton, D., 2012. 2012 Diamond Drilling and Surface Geochemistry, Detour East Project. Ressources Minières Radisson Inc, rapport statutaire;461 pages, 24 plans.
- GM 67654, Perk, N., Swanton, D., 2013. 2012 Surface Geochemistry Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 70 pages.
- GM 67644, Perk, N., Swanton, D., 2013. 2013 Geophysical Survey Report, Harri Property. Balmoral Resources Ltd, rapport statutaire; 38 pages, 7 plans.
- GM 68182, Perk, N., Swanton, D., 2014. 2013 Geophysical Work Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 32 pages, 20 plans.
- GM 67653, Perk, N., Swanton, D., Treat, R., Brennan, S., Peat, C., Booth, K., Mann, R., Voordouw, R., 2013. 2012 Drill Program Report, La Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 2344 pages, 35 plans.
- GM 67745, Perk, N., Voordouw, R., Mckeown, M., 2013. 2013 Soil Sampling Program Report, Detour East, Doigt, Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 568 pages, 34 plans.
- GM 55989, Poitras, S., 1998. Rapport de la campagne de forage, hiver 1998, projet Bapst (# 1198), rapport statutaire, 50 pages.
- GM 58259, Poitras, S., 2000. Rapport de la campagne de forage, hiver 2000, projet Bapst (#1198), rapport statutaire, 52 pages.
- GM 54318, Poitras, S., and Verschelden, R., 1997. Rapport de la campagne de forages, projet B2-Lanoullier (#1177), rapport statutaire, 53 pages.

- GM 54647, Potvin, H., 1997. A Report on Geophysical Work (Induced Polarization and Magnetic Surveys) over the Martigny A Property. Cyprus Canada Inc, rapport statutaire; 15 pages, 24 plans.
- GM 54382, Pouliot, S., and Adam, D., 1996. Rapport d'une campagne de forage, propriété B11, Les Métaux Billiton Canada Inc., rapport statutaire, 40 pages.
- GM 46833, Pressacco, R., 1988. Report on the 1988 Drilling Program, La Martiniere Property Project 1207. Explorations Noranda Ltée, rapport statutaire; 79 pages, 8 plans.
- GM 54177, Pritchard, R A., 1995. Dighemv Survey, Turgeon River. Placer Dome Inc, rapport statutaire; 126 pages, 20 plans.
- GM 61228, Reford, S W., Kwan, K., 2002. Report on Interpretation of Airborne Magnetic Data from Harricana River Area. Globestar Mining Inc, Corporation Tgw, rapport statutaires; 21 pages.
- GM 10850, Remick, J H., 1960. Information Report. Monpre Mining Co Ltd, rapport statutaire soumis; 1 page.
- RP458, Remick, J H., 1961. Preliminary Report on Manthet Jérémie La Forest Area, Abitibi-West and Abitibi-East Counties and Abitibi Territory. MRN; RP 458(A), 25 pages, 3 plans.
- RP458, Remick, J H., 1961. Rapport préliminaire sur la région de Manthet Jérémie La Forest, Comtes d'Abitibi-Ouest et d'Abitibi-Est et Territoire d'Abitibi. MRN; RP 458, 31 pages, 3 plans.
- GM 39941, Robinson, D J., 1981. Assessment Report, Diamond Drilling. Ressources Westmin Ltée, rapport statutaire; 10 pages.
- GM 38976, Robinson, D J., 1982. Assessment Report Geophysical Surveys and Diamond Drilling, Bertrand Project. Ressources Westmin Ltée, rapport statutaire; 28 pages, 14 plans.
- GM 38109, Rockingham, C J., 1981. A Report on the Turgeon Gold Project, Geological Prospecting and Mapping and Diamond Drilling. Western Mines Ltd, Ressources Westmin Ltée, rapport statutaire; 58 pages, 6 plans.
- GM 40106, Rockingham, C J., Nutter, G E., 1982. Diamond Drilling Report, Lac Combaluzier Claim Group. Ressources Westmin Ltée, rapport statutaire; 10 pages.
- GM 26074, Roger, J.G., 1970, Compte-rendu de la campagne de sondages de l'hiver 1970, sous-zone Lac Pater, Lac du Campet Lanouiller, projet Wawagosic, rapport statutaire, 49 pages.
- GM 66345, Sasias, M., Masson, M., Bourassa, S., 2012. Rapport des travaux de forage 2011, propriété Casault. Exploration Midland Inc, rapport statutaire; 83 pages.
- GM 09563, Seigel, HO., 1959. Report on Airborne Geophysical Surveys of Properties of Paudash Mines. Paudash Mines Ltd., rapport statutaire; 9 pages, 1 plan.
- GM 13018, Seigel, H O., 1959. Report on Magnetic, Electromagnetic and Gravimetric Surveys, Turgeon River Area. Paudash Mines Ltd, rapport statutaire; 11 pages, 82 plans.
- GM 36209, Selco Mining Corp LTD, 1979. Diamond Drill Record, Detour Project, GRID 10-100. rapport statutaire; 2 pages.

- GM 71473, Simard, J., 2019. Report on an Induced Polarization Survey Performed on the Casault Project. EXPLORATION MIDLAND INC, rapport statutaire; 29 pages, 12 plans.
- GM 24482, Sondages 1969, Zone du Lac Camp. Peñaroya Canada Limitée, rapport statutaire, 24 pages.
- GM 22497, Sondages, permis Wawagosic, 1967. Peñaroya Canada Limitée, rapport statutaire, 17 pages.
- GM 71352, St-Cyr, R D., 2019. Rapport des travaux de forage 2017, propriété Casault. Exploration Midland Inc, rapport statutaire; 692 pages.
- GM 64010, St-Hilaire, C., 2008. Heliborne High Resolution Aeromagnetic and Electromagnetic Survey, Jérémie Property. Claims Tremblay, Ressources Abitex Inc, Exploration Metauxdic, rapport statutaire; 22 pages, 6 plans.
- GM 68447, St-Hilaire, C., 2014. Rapport d'interprétation d'un levée magnétique et de polarisation provoquée, propriété Casault, Grille South et West. Exploration Midland Inc, rapport statutaire; 82 pages, 8 plans.
- GM 32805, Sullivan, J R., 1977. Diamond Drill Log, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 7 pages.
- GM 41074, Sullivan, P., Staszak, G H., 1983. Geological Report, Ste Helene Project, Jérémie 1-82. Explorations Noranda Ltée, rapport statutaire; 3 pages, 1 plan.
- GM 08704, Thoday, G P., 1959. Properties in Harricana River Area. Monpre Mining Co Ltd, rapport statutaire; 11 pages, 1 plan.
- GM 37930, Thorsen, K., 1981. Geophysical Surveys on Group GB 33, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 20 pages.
- GM 37931, Thorsen, K., 1981. Geophysical Surveys on Group GB 34, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 37932, Thorsen, K., 1981. Geophysical Surveys on Group GB 35 and 36, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 21 pages, 2 plans.
- GM 37799, Thorsen, K., 1981. Geophysical Surveys on Group GB 39. Teck Expls Ltd, rapport statutaire; 8 pages, 2 plans.
- GM 37935, Thorsen, K., 1981. Geophysical Surveys on Group GB 42, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37887, Thorsen, K., 1981. Geophysical Surveys on Group GB 43, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37936, Thorsen, K., 1981. Geophysical Surveys on Group GB 44, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages, 2 plans.
- GM 37877, Thorsen, K., 1981. Geophysical Surveys on Group GB 53, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37880, Thorsen, K., 1981. Geophysical Surveys on Group GB 58, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 8 pages.
- GM 37882, Thorsen, K., 1981. Geophysical Surveys on Group GB 61, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 9 pages.
- GM 39422, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 33, Jérémie Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.

- GM 39437, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 35 & 36, Jérémie & Gaudet Townships in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 6 plans.
- GM 39438, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 35 & 36, Jérémie & Gaudet Townships in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 6 plans.
- GM 39424, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 42, Gaudet Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39425, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 43, Gaudet, Lanouillier & La Martiniere Townships In The Gaudet Beschefer Area. Teck Expls LtD, rapport statutaire; 5 pages, 9 plans.
- GM 39426, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 46, Jérémie Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 9 plans.
- GM 39413, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 53, LaMartiniere Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39439, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 61, Lanoullier & La Martiniere Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39441, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 71, Gaudet Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 7 pages.
- GM 40023, Thorsen, K., 1982. Diamond Drill Log. Teck Expls Ltd, rapport statutaire; 4 pages.
- GM 40018, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-20 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 40020, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-75 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 40021, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-76 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 41127, Thorsen, K., Goodwin, J R., Fox, J., Barnes, B., 1982. Diamond Drill Log. Teck Expls Ltd, rapport statutaire; 29 pages.
- GM 52046, Tremblay, D., 1993. Rapport sur la campagne de forage au diamant, projet Lac Bertrand. Soquem, Ressources Westmin Ltée, rapport statutaire; 143 pages, 13 plans.
- GM 50997, Trudeau, J., Raymond, D., 1991. Levé géologique, été 1991, projet Lac Bertrand (1104). Ressources Westmin Ltée, rapport statutaire; 38 pages, 2 plans.
- GM 70683, Tucker, M J., Vervaeke, J., 2018. 2017 Drill Program Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 3778 pages, 40 plans.

- GM 70894, Tucker, M J., Vervaeke, J., 2018. 2018 Drill Program Report, Detour east Property. Balmoral Resources LTD, rapport statutaire; 299 pages, 1 plan.
- GM 71308, Tucker, M J., Vervaeke, J., Myers, J M., Tempest, S R., Vaudrin, M R H., Albert, S C., 2019. 2018 Drill Program Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 942 pages.
- GM 70895, Tucker, M J., Vervaeke, J., Tempest, S R., 2018. 2018 Drill Program Report, Harri Property. Balmoral Resources LTD, rapport statutaire; 122 pages.
- GM 71230, Tucker, M J., Vervaeke, J., Tempest, S R., Myers, J M., Vaudrin, M R H., 2019. 2018 Field Mapping Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 187 pages.
- GM 68603, Venter, N., Mokubung, K., Eadie, T., Legault, J., Plastow, G., 2014. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (Vtemplus) and Horizontal Magnetic Gradiometer Geophysical Survey, Lac Fleuri, Nantel, Grasset Gap, Grasset North, Jérémie-Fenelon and Nickel Test Survey Areas. Balmoral Resources Ltd, rapport statutaire; 684 pages, 48 plans.
- GM 53010, Vermette, D., 1995. Journaux de sondage, propriété Massicotte. Ressources Minières Radisson I, rapport statutaire; 13 pages, 2 plans.
- GM 56036, Verschelden, R., 1997.Rapport de la campagne de forage, projet B2-Lanouillier (#1177), Avril – Mai 1997, rapport statutaire, 94 pages.
- GM 57512, Verschelden, R., 1997. Rapport de la campagne de forage, projet B2 Lanoullier (#1177), Avril Mai 1998, rapport statutaire, 154 pages.
- GM 56103, Verschelden, R., Fliszar, A., 1998. Rapport de la campagne de forage, projet La Peltrie. SOQUEM, rapport statutaire; 173 pages, 11 plans.
- GM 69210, Voordouw, R., Brennan, S., Perk, N., Letourneau, M., Doyon, V., Booth, K., Baker, D., Sharman, L., Mann, R., 2014. 2013 Drilling and Geophysics (Ip, Hlem) Report on the La Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 2947 pages, 63 plans.
- GM 69087, Voordouw, R., Mckeown, M., Perk, N., 2014. 2014 Drilling and Geophysics (Ip), Report on the La Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 1514 pages, 32 plans.
- GM 69163, Voordouw, R., Perk, N., 2015. 2015 Diamond Drilling Report on the Detour East Project. Balmoral Resources Ltd, rapport statutaire; 86 pages, 3 plans.
- GM 69310, Voordouw, R., Perk, N., 2016. 2015 Drilling Report on the La Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 1145 pages, 29 plans.
- GM 66719, Wagner, D W., 2011. A Report on Induced Polarization Surveying, Detour East Property. Ressources Minières Radisson Inc, rapport statutaire; 27 pages, 99 plans.
- GM 66348, Wagner, D W., Peshkepia, A., Brown, W., Coutts, L., Mann, R., 2012. Drilling Report on the Detour East Property. Ressources Minières Radisson Inc, rapport statutaire; 140 pages, 5 plans.
- GM 68959, Wagner, D., Dufresne, R., Mann, R., Booth, K., 2015. 2014 MMI Soil Sampling Program Report, Detour East, Harri, Jérémie Properties. Balmoral Resources Ltd, rapport statutaire; 207 pages, 2 plans.
- GM 66026, Wagner, D., Mann, R., 2011. Assessment Report on the July-August 2011 Detour East Mapping Program, Detour East Property. Ressources Minières Radisson I, rapport statutaire; 42 pages.

- GM 45309, Webster, B., Hugues, N A., 1987. Report on Ground Geophysical Surveys, Xanaro Grid. Expl Min Golden Triangle Inc, rapport statutaire; 43 pages, 3 plans.
- GM 50596, Westhaver, B., 1991. 1991 Assessment Report, Diamond Drilling, Geology and Geophysics, La Peltrie "A". Total Energold Corp, rapport statutaire; 48 pages, 11 plans.
- GM 47447, Zeeman, M., 1988. Reverse Circulation Drilling Program. Glen Auden Resources Ltd, Royex Gold Mining Corp, Mineta Resources Ltd, rapport statutaire; 147 pages, 6 plans.

APPENDIX I - LIST OF MINING TITLES

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2208453	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208454	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208455	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208456	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208457	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208458	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208459	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208460	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208461	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208462	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208463	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208464	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208465	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2208466	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208467	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208468	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208469	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208470	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208471	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208472	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208473	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208474	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208475	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208476	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208477	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208478	NTS 32E14	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208479	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208480	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208481	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208482	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208483	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208484	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208485	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208486	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208487	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208488	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208489	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2208490	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208491	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208492	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2208523	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208524	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208525	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208526	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208527	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208528	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208529	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208530	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208531	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208532	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208533	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208534	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208535	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208536	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2208537	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208538	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208539	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208540	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208541	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208542	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208543	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208544	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208545	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208546	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208547	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208548	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208549	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208550	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208551	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208552	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208553	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2208554	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2208555	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2208556	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2208557	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2208558	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2208559	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2208560	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208561	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208562	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208565	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208566	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208567	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208568	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208569	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208570	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208571	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2208572	NTS 32L03	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2211287	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2211288	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.31
CASAULT	CDC	2211289	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.31
CASAULT	CDC	2211290	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211291	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211292	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211293	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211294	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211295	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211296	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211297	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211298	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211299	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211300	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211301	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211302	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2211303	NTS 32L03	Mar. 28, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.32
CASAULT	CDC	2214200	NTS 32L03	Apr. 14, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2214201	NTS 32L03	Apr. 14, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2214202	NTS 32L03	Apr. 14, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2214203	NTS 32L03	Apr. 14, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2214204	NTS 32L03	Apr. 14, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2241673	NTS 32L03	Jul. 20, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2247245	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.46
CASAULT	CDC	2247246	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.46
CASAULT	CDC	2247247	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.46
CASAULT	CDC	2247248	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.46
CASAULT	CDC	2247249	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.46
CASAULT	CDC	2247250	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.45
CASAULT	CDC	2247251	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.45
CASAULT	CDC	2247252	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.45
CASAULT	CDC	2247253	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.45
CASAULT	CDC	2247254	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.45
CASAULT	CDC	2247255	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.44
CASAULT	CDC	2247256	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.44
CASAULT	CDC	2247257	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.44
CASAULT	CDC	2247258	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.44
CASAULT	CDC	2247259	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.44
CASAULT	CDC	2247260	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2247261	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2247262	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247263	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247264	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247265	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247266	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247267	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247268	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2247269	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247270	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247271	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247272	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247273	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247274	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247275	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247276	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247277	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247278	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2247279	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2247280	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2247281	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2247282	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2247283	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2247284	NTS 32E14	Aug. 23, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2271264	NTS 32E15	Jan. 31, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2271265	NTS 32E15	Jan. 31, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2273155	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273156	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273157	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273158	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273159	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273160	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273161	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273162	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273163	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273164	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273165	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273166	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2273167	NTS 32E14	Feb. 10, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2276124	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276125	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276126	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276127	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276128	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276129	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276130	NTS 32E15	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2276131	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276132	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276133	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276134	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276135	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276136	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276137	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276138	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276139	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2276140	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276141	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276142	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2276143	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276144	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276145	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276146	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276147	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276148	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276149	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276150	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2276151	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276152	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276153	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276154	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276155	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276156	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276157	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276158	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276159	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276160	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2276161	NTS 32L02	Mar. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.34
CASAULT	CDC	2282141	NTS 32L02	Mar. 30, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.33
CASAULT	CDC	2286321	NTS 32E14	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286322	NTS 32E14	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286323	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286324	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286325	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286326	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286327	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286328	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286329	NTS 32E14	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	50.06
CASAULT	CDC	2286330	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	52.90
CASAULT	CDC	2286331	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	52.61
CASAULT	CDC	2286332	NTS 32E15	Apr. 14, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286777	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286778	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286779	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286780	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	54.18
CASAULT	CDC	2286781	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2286782	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286783	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286784	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	27.81
CASAULT	CDC	2286785	NTS 32E15	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286786	NTS 32E15	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286787	NTS 32E15	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286788	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	50.19
CASAULT	CDC	2286790	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286791	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286792	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286793	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286794	NTS 32L02	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2286795	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286796	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286797	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286798	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	51.57
CASAULT	CDC	2286799	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286800	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2286801	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2286802	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286803	NTS 32E14	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2286804	NTS 32L03	Apr. 18, 2024	Midland	Option fr Midland, Soquem NSR 1%	30.13
CASAULT	CDC	2294127	NTS 32E14	Jun. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	42.74
CASAULT	CDC	2294128	NTS 32E14	Jun. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2313433	NTS 32E14	Sep. 25, 2024	Midland	Option fr Midland, Soquem NSR 1%	38.55
CASAULT	CDC	2321964	NTS 32E14	Oct. 31, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322789	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322790	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322791	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322792	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322793	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322794	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322795	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322796	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322797	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322798	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.41
CASAULT	CDC	2322799	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2322800	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322801	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322802	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322803	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322804	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322805	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322806	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322807	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322808	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322809	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322810	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322811	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2322812	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322813	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322814	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322815	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322816	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322817	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322818	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322819	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322820	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322821	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322822	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2322823	NTS 32E14	Nov. 7, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2326101	NTS 32E15	Dec. 1, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2326104	NTS 32L02	Dec. 1, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2326106	NTS 32L02	Dec. 1, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2384320	NTS 32E15	Apr. 17, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2384321	NTS 32E15	Apr. 17, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2384718	NTS 32E15	Apr. 29, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.37
CASAULT	CDC	2384719	NTS 32L02	Apr. 29, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.36
CASAULT	CDC	2384720	NTS 32L02	Apr. 29, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2390766	NTS 32L02	Sep. 16, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.35
CASAULT	CDC	2395089	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2395090	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2395091	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2395092	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
CASAULT	CDC	2395093	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2395094	NTS 32E15	Dec. 1, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2436774	NTS 32E14	Feb. 4, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2436775	NTS 32E14	Feb. 4, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2437713	NTS 32E15	Mar. 3, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2437714	NTS 32E15	Mar. 3, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2437715	NTS 32E15	Mar. 3, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2437720	NTS 32E15	Mar. 3, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2438023	NTS 32E15	Mar. 13, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2438024	NTS 32E15	Mar. 13, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2439224	NTS 32E14	Apr. 4, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2457675	NTS 32E15	Aug. 16, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2457677	NTS 32E15	Aug. 16, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2457678	NTS 32E15	Aug. 16, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2457679	NTS 32E15	Aug. 16, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2457680	NTS 32E15	Aug. 16, 2023	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2513528	NTS 32E15	Feb. 27, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.40
CASAULT	CDC	2513529	NTS 32E15	Feb. 27, 2024	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2517469	NTS 32E15	May. 2, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2517470	NTS 32E15	May. 2, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2539505	NTS 32E15	May. 26, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.39
CASAULT	CDC	2540266	NTS 32E15	Jun. 5, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2540267	NTS 32E15	Jun. 5, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2540268	NTS 32E15	Jun. 5, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2540269	NTS 32E15	Jun. 5, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT	CDC	2540270	NTS 32E15	Jun. 5, 2025	Midland	Option fr Midland, Soquem NSR 1%	55.38
CASAULT Sum							17725.64
DETOUR EAST	CDC	99096	NTS 32E14	Sep. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99097	NTS 32E14	Sep. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99568	NTS 32E14	Oct. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99569	NTS 32E14	Oct. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99570	NTS 32E14	Oct. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99571	NTS 32E14	Oct. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99572	NTS 32E14	Oct. 26, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99742	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99743	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	99744	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99745	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99746	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99747	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	99748	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99749	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99750	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99751	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99752	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	99753	NTS 32E14	Oct. 25, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104228	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104229	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104230	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104231	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104232	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104233	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104234	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104235	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104239	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	104240	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104241	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104242	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104243	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	104244	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104245	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104246	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104247	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	104248	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	104249	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	104250	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	104251	NTS 32E14	Nov. 22, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	1133019	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133020	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133021	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	1133022	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133023	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133024	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133025	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133026	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.43
DETOUR EAST	CDC	1133027	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.43
DETOUR EAST	CDC	1133028	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
DETOUR EAST	CDC	1133029	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
DETOUR EAST	CDC	1133030	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
DETOUR EAST	CDC	1133031	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
DETOUR EAST	CDC	1133032	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133033	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133034		Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133035	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	1133036	NTS 32E14	Feb. 10, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
DETOUR EAST	CDC	2011745	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2011746	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2011751	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2011752		May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2011753	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2011762	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011763	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011764	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2011765	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011766	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011767	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011768	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011769	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011770	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011774	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2011783	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2011784	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2011785	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2011786	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2011787	NTS 32E14	May. 22, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2012630	NTS 32E14	May. 23, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2012631	NTS 32E14	May. 23, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2012632	NTS 32E14	May. 23, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2029533	NTS 32E13	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029537	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2029538	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2029539	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2029540	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2029541	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2029543	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029544	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029545	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029546	NTS 32E14	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029547	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2029548	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2029549	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2029550	NTS 32E13	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.34
DETOUR EAST	CDC	2029551	NTS 32E13	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029552	NTS 32E13	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.33
DETOUR EAST	CDC	2029553	NTS 32E13	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2029554	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.33
DETOUR EAST	CDC	2029555	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2029556	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.34
DETOUR EAST	CDC	2029557	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2029558	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2029559	NTS 32L04	Oct. 16, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050848	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2050849	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2050850	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2050851	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2050852	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2050853	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050854	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050855	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050856	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050860	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050872	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050891	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050892	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050893	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050894	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050895	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050896	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050897	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050898	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050899	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050900	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050901	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050902	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050903	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050904	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050905	NTS 32E14	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2050906	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2050917	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	0.01
DETOUR EAST	CDC	2050931	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2050932	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2050933	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2050942	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2050943	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2050944	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050945	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050946	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2050947	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050948	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050949	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2050950	NTS 32L03	Jan. 24, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2074183	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074184	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074185	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074186	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074187	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074188	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074189	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074190	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.46
DETOUR EAST	CDC	2074191	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074192	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074193	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074194	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074195	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074196	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074197	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074198	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2074199	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2074200	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2074201	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2074202	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2074203	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2074204	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2074205	NTS 32E14	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2074206	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2074207	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2074208	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2074209	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2074211	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2074212	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2074213	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2074214	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2074216	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2074217	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2074218	NTS 32L03	Apr. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2148342	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2148343	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2148344	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2148345	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2148346	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2148347	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2148348	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.45
DETOUR EAST	CDC	2148349	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148350	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148351	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148352	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148353	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148354	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148355	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2148356	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2148357	NTS 32E14	May. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157245	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157246	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157247	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157248	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157249	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157250	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157251	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157252	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157253	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157263	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157274	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2157284	NTS 32E14	Jun. 1, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2157287	NTS 32E13	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2157304	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157305	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157306	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157307	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157308	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157309	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157310	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2157311	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157312	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2157313	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157314	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157315	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157316	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157317	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2157325	NTS 32E14	Jun. 2, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2159007	NTS 32E13	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2159008	NTS 32E13	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2159009	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159010	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159011	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159012	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159013	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159014	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159015	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159016	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159017	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159018	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159019	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2159020	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.43
DETOUR EAST	CDC	2159021	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2159022	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2159023	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2159024	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2159025	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2159026	NTS 32E14	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.41
DETOUR EAST	CDC	2159042	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159043	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159044	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159045	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159046	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159047	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159048	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159049	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2159050	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2159051	NITC 22L 02	lun 4 2022	\/\allbridge	Ontion to Agricos Dedicago NCD 20/	55.31
DETOUR EAST	CDC	2159051	NTS 32L03 NTS 32L03	Jun. 4, 2023 Jun. 4, 2023	Wallbridge Wallbridge	Option to Agnico; Radisson NSR 2% Option to Agnico; Radisson NSR 2%	55.31
DETOUR EAST	CDC	2159052	NTS 32L03	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.31
DETOUR EAST	CDC	2164561	NTS 32E14	Jul. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.44
DETOUR EAST	CDC	2164562	NTS 32E14		•		55.38
DETOUR EAST	CDC	2180524	NTS 32E14	Jul. 8, 2023 Jun. 2, 2023	Wallbridge Wallbridge	Option to Agnico; Radisson NSR 2%	7.34
DETOUR EAST	CDC	2261175	NTS 32E13		,	Option to Agnico; Radisson NSR 2%	55.39
				Nov. 21, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	
DETOUR EAST	CDC	2361365	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2361366	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2361367	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361368	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361369	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361370	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361371	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361372	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361373	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361374	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361375	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361376	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361377	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361378	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361379	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361380	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361381	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361382	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361383	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361384	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2361385	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2361391	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2361394	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2361418	NTS 32L03	Nov. 14, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2384638	NTS 32E13	Jun. 4, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	7.35
DETOUR EAST	CDC	2399544	NTS 32L03	Feb. 11, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2399545	NTS 32L03	Feb. 11, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2399546	NTS 32L03	Feb. 11, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2399547	NTS 32L03	Feb. 11, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2399548	NTS 32L03	Feb. 11, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2443973	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2443974	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2443975	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2443976	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2443977	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.31
DETOUR EAST	CDC	2443986	NTS 32L03	May. 3, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.31
DETOUR EAST	CDC	2547819	NTS 32E13	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547820	NTS 32E13	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547821	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547822	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547823	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547824	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547825	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547826	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547827	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547828	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547829	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547830	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547831	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547832	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547833	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547834	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547835	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547836	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547837	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547838	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547839	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547840	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547841	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547842	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547843	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547844	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547845	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547846	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547847	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547848	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547849	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2547850	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547851	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547852	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547853	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547854	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547855	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547856	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547857	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547858	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547859	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547860	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.37
DETOUR EAST	CDC	2547861	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547862	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547863	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547864	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547865	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547866	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547867	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.40
DETOUR EAST	CDC	2547868	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547869	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547870	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547871	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547872	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547873	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547874	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.39
DETOUR EAST	CDC	2547875	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547876	NTS 32E14	Dec. 8, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547877	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2547878	NTS 32E14	Dec. 8, 2023	Wallbridge	Option to Agnico; Radisson NSR 2%	55.38
DETOUR EAST	CDC	2548251	NTS 32E14	Dec. 12, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2548252	NTS 32E14	Dec. 12, 2025	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2549767	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549768	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549769	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549770	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549771	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549772	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2549773	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549774	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549775	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549776	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549777	NTS 32L03	Apr. 8, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2549778	NTS 32L03	Apr. 8, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2549779	NTS 32L03	Apr. 8, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.32
DETOUR EAST	CDC	2549780	NTS 32L03	Jun. 21, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549781	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549782	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549783	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549784	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549785	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549786	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549787	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549788	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549789	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549790	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.33
DETOUR EAST	CDC	2549791	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549792	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549793	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549794	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549795	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549796	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549797	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549798	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549799	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549800	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549801	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549802	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549803	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549804	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549805	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549806	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549807	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549808	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549809	NTS 32E14	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DETOUR EAST	CDC	2549810	NTS 32E14	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2549811	NTS 32E14	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2549812	NTS 32E14	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.36
DETOUR EAST	CDC	2549813	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549814	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549815	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549816	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549817	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549818	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549819	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2549820	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549821	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549937	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549938	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549939	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.35
DETOUR EAST	CDC	2549940	NTS 32L03	Jun. 20, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.34
DETOUR EAST	CDC	2550986	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2550987	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2550988	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2550989	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2550990	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2550991	NTS 32E14	Jan. 16, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2554920	NTS 32E14	Feb. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2554921	NTS 32E14	Feb. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST	CDC	2554922	NTS 32E14	Feb. 9, 2024	Wallbridge	Option to Agnico; Radisson NSR 2%	55.42
DETOUR EAST Sum							23090.07
DOIGT	CDC	2282229	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282230	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282231	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282232	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282233	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282234	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282235	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282236	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT	CDC	2282237	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
DOIGT	CDC	2282238	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282239	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282240	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282241	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282242	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282243	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282244	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282245	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282246	NTS 32L03	Apr. 3, 2024	Wallbridge		55.30
DOIGT	CDC	2282250	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282251	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282252	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282253	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282254	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282255	NTS 32L03	Apr. 3, 2024	Wallbridge		55.29
DOIGT	CDC	2282258	NTS 32L03	Apr. 3, 2024	Wallbridge		55.28
DOIGT	CDC	2282259	NTS 32L03	Apr. 3, 2024	Wallbridge		55.28
DOIGT	CDC	2282260	NTS 32L03	Apr. 3, 2024	Wallbridge		55.28
DOIGT	CDC	2282261	NTS 32L03	Apr. 3, 2024	Wallbridge		55.28
DOIGT	CDC	2282264	NTS 32L03	Apr. 3, 2024	Wallbridge		55.27
DOIGT	CDC	2282265	NTS 32L03	Apr. 3, 2024	Wallbridge		55.27
DOIGT	CDC	2282335	NTS 32L03	Apr. 3, 2024	Wallbridge		55.31
DOIGT Sum							1714.20
FENELON	ВМ	864	NTS 32L02	Apr. 9, 2027	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	53.36
FENELON	BNE	43954		Mar. 31, 2023	Wallbridge		
FENELON	BNE	43987		Mar. 31, 2023	Wallbridge		
FENELON	BNE	44600		Mar. 31, 2023	Wallbridge		
FENELON	CDC	2182337	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182338	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182339	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182340	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182341	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182342	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41
FENELON	CDC	2182343	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
FENELON	CDC	2182344		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	37.32
FENELON	CDC	2182345	NTS 32E15	Apr. 15, 2024	Wallbridge		23.57
FENELON	CDC	2182346	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	7.54
FENELON	CDC	2182347	NTS 32E15	Apr. 15, 2024	Wallbridge		22.95
FENELON	CDC	2182348		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	8.17
FENELON	CDC	2182349		Apr. 15, 2024	Wallbridge		22.17
FENELON	CDC	2182350		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	8.92
FENELON	CDC	2182351	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	50.75
FENELON	CDC	2182352		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182353	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182354		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182355		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182356		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182357	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182358		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182359	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182360		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2182361		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2182362		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2182363	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2182364	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2182365	NTS 32E15	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2182367	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	35.84
FENELON	CDC	2182369	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	43.10
FENELON	CDC	2182370	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2182374		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2182375	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2182376	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2182377	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.35
FENELON	CDC	2182381	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.34
FENELON	CDC	2182382	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
FENELON	CDC	2182385		Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.33
FENELON	CDC	2182388	NTS 32L02	Apr. 15, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.32
FENELON	CDC	2271644	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271645	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271646	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271647	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271648	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271649	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271650	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271651	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.37
FENELON	CDC	2271652	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.37
FENELON	CDC	2271653	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.37
FENELON	CDC	2271654	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271655	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271656	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.37
FENELON	CDC	2271662		Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271663	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271664	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271665	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271666	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271667	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.36
FENELON	CDC	2271668	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271669	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271670	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271671	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.36
FENELON	CDC	2271676	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271677	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271678	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
FENELON	CDC	2271679	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	55.35
FENELON	CDC	2271680	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	55.35
FENELON	CDC	2271681	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271682	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271683	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271686	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271687	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271688	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271689	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	55.34
FENELON	CDC	2271690	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.34
FENELON	CDC	2271691	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.34
FENELON	CDC	2271692	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271697	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.33
FENELON	CDC	2271698	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.33
FENELON	CDC	2271699	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.33
FENELON	CDC	2271705	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.32
FENELON	CDC	2271706	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.32
FENELON	CDC	2271708	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271709	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271710	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271711	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271712	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271713	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271714	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271715	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271716	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.40
FENELON	CDC	2271717	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271718	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
FENELON	CDC	2271719	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271720	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271721	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271722	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271723	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271724	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271725	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271726	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271727	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271728	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271729	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271730	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271731	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271732	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271733	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271734	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271735	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271736	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271737	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271738	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271739	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271740	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271741	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271742	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271743	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271744	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271745	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271746	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271747	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271748	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.35
FENELON	CDC	2271749	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	55.35
FENELON	CDC	2271751	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271752	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
FENELON	CDC	2271753	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271754	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
FENELON	CDC	2271755	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271756	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.38
FENELON	CDC	2271758	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271759	NTS 32E15	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	55.39
FENELON	CDC	2271783	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	55.36
FENELON	CDC	2271784	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	42.90
FENELON	CDC	2271785	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	47.74
FENELON	CDC	2271789	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	53.85
FENELON	CDC	2271790	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1% ; 2176423 Ontario Ltd. NSR 1% ; Gold Royalty Corp. NSR 2%	27.44
FENELON	CDC	2271791	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%; 2176423 Ontario Ltd. NSR 1%; Gold Royalty Corp. NSR 2%	51.56
FENELON	CDC	2271813	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	49.51
FENELON	CDC	2271814	NTS 32L02	Aug. 5, 2023	Wallbridge	Fr. Nevada Corp. NSR 1%	39.02
FENELON	CDC	2335370	NTS 32E15	Mar. 4, 2024	Wallbridge		18.08
FENELON	CDC	2335371	NTS 32E15	Mar. 4, 2024	Wallbridge		24.28
FENELON	CDC	2335372	NTS 32E15	Mar. 4, 2024	Wallbridge		24.28
FENELON	CDC	2335373		Mar. 4, 2024	Wallbridge		24.31
FENELON	CDC	2335374		Mar. 4, 2024	Wallbridge		4.64
FENELON	CDC	2335383	NTS 32L02	Mar. 4, 2024	Wallbridge		19.53
FENELON	CDC	2335384	NTS 32L02	Mar. 4, 2024	Wallbridge		12.26
FENELON Sum							7566.03
GRASSET	CDC	2262763		Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262764		Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262769		Dec. 2, 2025	Wallbridge		55.42
GRASSET	CDC	2262770		Dec. 2, 2025	Wallbridge		55.42
GRASSET	CDC	2262771	NTS 32E16	Dec. 2, 2025	Wallbridge		55.42

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2262772	NTS 32E16	Dec. 2, 2025	Wallbridge		55.42
GRASSET	CDC	2262773	NTS 32E16	Dec. 2, 2023	Wallbridge		55.42
GRASSET	CDC	2262774	NTS 32E16	Dec. 2, 2023	Wallbridge		55.42
GRASSET	CDC	2262775	NTS 32E16	Dec. 2, 2023	Wallbridge		55.42
GRASSET	CDC	2262776	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262777	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262778	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262779	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262780	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262781	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262782	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262783	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262784	NTS 32E16	Dec. 2, 2023	Wallbridge		55.41
GRASSET	CDC	2262785	NTS 32E16	Dec. 2, 2023	Wallbridge		55.41
GRASSET	CDC	2262791	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262792	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262793	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262794	NTS 32E16	Dec. 2, 2025	Wallbridge		55.41
GRASSET	CDC	2262795	NTS 32E16	Dec. 2, 2023	Wallbridge		55.41
GRASSET	CDC	2262801	NTS 32E16	Dec. 2, 2025	Wallbridge		55.39
GRASSET	CDC	2262802	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262803	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2262804	NTS 32E16	Dec. 2, 2025	Wallbridge		55.40
GRASSET	CDC	2264061	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264062	NTS 32E16	Dec. 12, 2023	Wallbridge		55.43
GRASSET	CDC	2264063	NTS 32E16	Dec. 12, 2023	Wallbridge		55.43
GRASSET	CDC	2264064	NTS 32E16	Dec. 12, 2023	Wallbridge		55.43
GRASSET	CDC	2264065	NTS 32E16	Dec. 12, 2023	Wallbridge		55.43
GRASSET	CDC	2264066	NTS 32E16	Dec. 12, 2023	Wallbridge		55.43
GRASSET	CDC	2264067	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264068	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264069	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264070	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264071	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264072	NTS 32E16	Dec. 12, 2023	Wallbridge		55.42
GRASSET	CDC	2264073	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41
GRASSET	CDC	2264074	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2264075	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41
GRASSET	CDC	2264076	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41
GRASSET	CDC	2264077	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41
GRASSET	CDC	2264078	NTS 32E16	Dec. 12, 2023	Wallbridge		55.41
GRASSET	CDC	2264079	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264080	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264081	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264082	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264083	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264084	NTS 32E16	Dec. 12, 2023	Wallbridge		55.40
GRASSET	CDC	2264085	NTS 32E16	Dec. 12, 2025	Wallbridge		55.40
GRASSET	CDC	2306694	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306695	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306696	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306697	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306698	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306699	NTS 32E15	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306700	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306701	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306702	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306703	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306704	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306705	NTS 32E15	Aug. 9, 2024	Wallbridge		55.41
GRASSET	CDC	2306706	NTS 32E16	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306707	NTS 32E16	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306708	NTS 32E16	Aug. 9, 2024	Wallbridge		55.42
GRASSET	CDC	2306832	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306833	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306834	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306837	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306838	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306839	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306840	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306841	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306842	NTS 32E16	Aug. 9, 2024	Wallbridge		55.46
GRASSET	CDC	2306843	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306844	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2306845	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306846	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306847	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306848	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306849	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306850	NTS 32E16	Aug. 9, 2024	Wallbridge		55.45
GRASSET	CDC	2306851	NTS 32E16	Aug. 9, 2024	Wallbridge		55.43
GRASSET	CDC	2306852	NTS 32E16	Aug. 9, 2024	Wallbridge		55.43
GRASSET	CDC	2306853	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306854	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306855	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306856	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306857	NTS 32E16	Aug. 9, 2024	Wallbridge		55.44
GRASSET	CDC	2306858	NTS 32E16	Aug. 9, 2024	Wallbridge		55.43
GRASSET	CDC	2306859	NTS 32E16	Aug. 9, 2024	Wallbridge		55.43
GRASSET	CDC	2306860	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306861	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306862	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306863	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306864	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306865	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306866	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306867	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306868	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306869	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306870	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306871	NTS 32E16	Aug. 9, 2024	Wallbridge		55.39
GRASSET	CDC	2306872	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306873	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306874	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306875	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306876	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306877	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306878	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306879	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306880	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306881	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2306882	NTS 32L01	Aug. 9, 2024	Wallbridge		55.38
GRASSET	CDC	2306884	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306885	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306886	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306887	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306888	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306889	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306890	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306891	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306892	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306893	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306894	NTS 32L01	Aug. 9, 2024	Wallbridge		55.37
GRASSET	CDC	2306896	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306897	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306898	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306899	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306900	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306901	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306902	NTS 32L01	Aug. 9, 2024	Wallbridge		55.36
GRASSET	CDC	2306905	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2306906	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2306907	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2306908	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2306909	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2306910	NTS 32L01	Aug. 9, 2024	Wallbridge		55.35
GRASSET	CDC	2307076	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307077	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307078	NTS 32E16	Aug. 11, 2024	Wallbridge		55.49
GRASSET	CDC	2307079		Aug. 11, 2024	Wallbridge		55.49
GRASSET	CDC	2307080	NTS 32E16	Aug. 11, 2024	Wallbridge		55.49
GRASSET	CDC	2307081	NTS 32E16	Aug. 11, 2024	Wallbridge		55.49
GRASSET	CDC	2307083	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307084	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307085		Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307086	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307087	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307088	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2307089	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307090	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307091	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307092	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307093	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307094	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307095	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307096	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307097	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307098	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307099	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307100	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307101	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307102	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307103	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307104	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307105	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307106	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307107	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307108	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307109	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307110	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307111	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307112	NTS 32E16	Aug. 11, 2024	Wallbridge		55.43
GRASSET	CDC	2307113	NTS 32L01	Aug. 11, 2024	Wallbridge		55.34
GRASSET	CDC	2307114	NTS 32L01	Aug. 11, 2024	Wallbridge		55.34
GRASSET	CDC	2307115	NTS 32L01	Aug. 11, 2024	Wallbridge		55.34
GRASSET	CDC	2307116	NTS 32L01	Aug. 11, 2024	Wallbridge		55.34
GRASSET	CDC	2307117	NTS 32L01	Aug. 11, 2024	Wallbridge		55.33
GRASSET	CDC	2307118	NTS 32L01	Aug. 11, 2024	Wallbridge		55.33
GRASSET	CDC	2307119	NTS 32L01	Aug. 11, 2024	Wallbridge		55.33
GRASSET	CDC	2307120	NTS 32L01	Aug. 11, 2024	Wallbridge		55.33
GRASSET	CDC	2307121	NTS 32L01	Aug. 11, 2024	Wallbridge		55.33
GRASSET	CDC	2307123	NTS 32L01	Aug. 11, 2024	Wallbridge		55.32
GRASSET	CDC	2307124	NTS 32L01	Aug. 11, 2024	Wallbridge		55.32
GRASSET	CDC	2307125	NTS 32L01	Aug. 11, 2024	Wallbridge		55.32
GRASSET	CDC	2307179	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2307180	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307181	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307182	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307183	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307184	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307185	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307186	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307187	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307188	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307189	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307190	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307191	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307192	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307193	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307194	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307195	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307196	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307197	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307198	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307199	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307200	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307201	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307202	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307203	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307204	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307205	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307206	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307207	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307208	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307209	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307210	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307211	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307212	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307213	NTS 32E16	Aug. 11, 2024	Wallbridge		55.44
GRASSET	CDC	2307270	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307271	NTS 32E16	Aug. 11, 2024	Wallbridge		55.48
GRASSET	CDC	2307272	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2307273	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307274	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307275	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307276	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307277	NTS 32E16	Aug. 11, 2024	Wallbridge		55.47
GRASSET	CDC	2307278	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307279	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307280	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307281	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307282	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307283	NTS 32E16	Aug. 11, 2024	Wallbridge		55.46
GRASSET	CDC	2307285	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307286	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2307287	NTS 32E16	Aug. 11, 2024	Wallbridge		55.45
GRASSET	CDC	2395908	NTS 32E16	Dec. 11, 2024	Wallbridge		55.43
GRASSET	CDC	2395909	NTS 32E16	Dec. 11, 2024	Wallbridge		55.43
GRASSET	CDC	2395910	NTS 32E16	Dec. 11, 2024	Wallbridge		55.42
GRASSET	CDC	2395911		Dec. 11, 2024	Wallbridge		55.42
GRASSET	CDC	2395912	NTS 32E16	Dec. 11, 2024	Wallbridge		55.42
GRASSET	CDC	2395913		Dec. 11, 2024	Wallbridge		55.42
GRASSET	CDC	2395914	NTS 32E16	Dec. 11, 2024	Wallbridge		55.42
GRASSET	CDC	2395915	NTS 32E16	Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395916		Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395917	NTS 32E16	Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395918	NTS 32E16	Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395919	NTS 32E16	Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395920	NTS 32E16	Dec. 11, 2024	Wallbridge		55.41
GRASSET	CDC	2395921	NTS 32E16	Dec. 11, 2024	Wallbridge		55.40
GRASSET	CDC	2395923		Dec. 11, 2024	Wallbridge		55.39
GRASSET	CDC	2395924		Dec. 11, 2024	Wallbridge		55.39
GRASSET	CDC	2396232		Dec. 17, 2024	Wallbridge		55.41
GRASSET	CDC	2396233	NTS 32E16	Dec. 17, 2024	Wallbridge		55.40
GRASSET	CDC	2396234	NTS 32E16	Dec. 17, 2024	Wallbridge		55.39
GRASSET	CDC	2396235		Dec. 17, 2024	Wallbridge		55.39
GRASSET	CDC	2396236	NTS 32E16	Dec. 17, 2024	Wallbridge		55.39
GRASSET	CDC	2396237	NTS 32E16	Dec. 17, 2024	Wallbridge		55.39
GRASSET	CDC	2396238	NTS 32E16	Dec. 17, 2024	Wallbridge		55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2396587	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396588	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396589	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396590	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396591	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396592	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2396593	NTS 32L01	Dec. 26, 2024	Wallbridge		55.38
GRASSET	CDC	2397007	NTS 32E16	Jan. 7, 2025	Wallbridge		55.42
GRASSET	CDC	2397008	NTS 32E16	Jan. 7, 2025	Wallbridge		55.40
GRASSET	CDC	2397439	NTS 32E16	Jan. 13, 2025	Wallbridge		55.44
GRASSET	CDC	2397714	NTS 32E16	Jan. 14, 2025	Wallbridge		55.41
GRASSET	CDC	2397982	NTS 32E16	Jan. 20, 2025	Wallbridge		55.45
GRASSET	CDC	2397983	NTS 32E16	Jan. 20, 2025	Wallbridge		55.45
GRASSET	CDC	2397984	NTS 32E16	Jan. 20, 2025	Wallbridge		55.45
GRASSET	CDC	2397985	NTS 32E16	Jan. 20, 2025	Wallbridge		55.45
GRASSET	CDC	2397986	NTS 32E16	Jan. 20, 2025	Wallbridge		55.45
GRASSET	CDC	2397987	NTS 32E16	Jan. 20, 2025	Wallbridge		55.44
GRASSET	CDC	2397988	NTS 32E16	Jan. 20, 2025	Wallbridge		55.44
GRASSET	CDC	2397989	NTS 32E16	Jan. 20, 2025	Wallbridge		55.44
GRASSET	CDC	2397990	NTS 32E16	Jan. 20, 2025	Wallbridge		55.44
GRASSET	CDC	2397991	NTS 32E16	Jan. 20, 2025	Wallbridge		55.44
GRASSET	CDC	2397992	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397993	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397994	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397995	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397996	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397997	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397998	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2397999	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2398000	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2398001	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2398002	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2398003	NTS 32E16	Jan. 20, 2025	Wallbridge		55.43
GRASSET	CDC	2398004		Jan. 20, 2025	Wallbridge		55.42
GRASSET	CDC	2398005	NTS 32E16	Jan. 20, 2025	Wallbridge		55.42
GRASSET	CDC	2398006	NTS 32E16	Jan. 20, 2025	Wallbridge		55.42
GRASSET	CDC	2398007	NTS 32E16	Jan. 20, 2025	Wallbridge		55.42

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
GRASSET	CDC	2398008	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398009	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398010	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398011	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398012	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398013	NTS 32E16	Jan. 20, 2025	Wallbridge		55.41
GRASSET	CDC	2398014	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398015	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398016	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398017	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398018	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398019	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2398020	NTS 32E16	Jan. 20, 2025	Wallbridge		55.40
GRASSET	CDC	2399564	NTS 32E16	Feb. 12, 2025	Wallbridge		55.44
GRASSET	CDC	2399565	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399566	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399567	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399568	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399569	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399570	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2399571	NTS 32E16	Feb. 12, 2025	Wallbridge		55.42
GRASSET	CDC	2432108	NTS 32E16	Aug. 17, 2024	Wallbridge		55.43
GRASSET Sum							17901.12
HARRI	CDC	2282270	NTS 32E15	Apr. 3, 2024	Wallbridge		55.40
HARRI	CDC	2282271	NTS 32E15	Apr. 3, 2024	Wallbridge		55.41
HARRI	CDC	2282272	NTS 32E15	Apr. 3, 2024	Wallbridge		55.39
HARRI	CDC	2282273	NTS 32E15	Apr. 3, 2024	Wallbridge		55.39
HARRI	CDC	2282275	NTS 32E15	Apr. 3, 2024	Wallbridge		55.40
HARRI	CDC	2282276	NTS 32E15	Apr. 3, 2024	Wallbridge		55.40
HARRI	CDC	2282277	NTS 32E15	Apr. 3, 2024	Wallbridge		55.40
HARRI	CDC	2282283	NTS 32E15	Apr. 3, 2024	Wallbridge		55.38
HARRI	CDC	2282284	NTS 32E15	Apr. 3, 2024	Wallbridge		55.38
HARRI	CDC	2282285	NTS 32E15	Apr. 3, 2024	Wallbridge		55.39
HARRI	CDC	2282286	NTS 32E15	Apr. 3, 2024	Wallbridge		55.39
HARRI	CDC	2282287	NTS 32E15	Apr. 3, 2024	Wallbridge		55.39
HARRI	CDC	2282288	NTS 32E15	Apr. 3, 2024	Wallbridge		55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
HARRI	CDC	2282289	NTS 32E15	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282290	NTS 32E15	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282291	NTS 32E15	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282292	NTS 32E15	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282293	NTS 32E15	Apr. 3, 2024	Wallbridge		55.38
HARRI	CDC	2282294	NTS 32E15	Apr. 3, 2024	Wallbridge		55.38
HARRI	CDC	2282295	NTS 32E15	Apr. 3, 2024	Wallbridge		55.38
HARRI	CDC	2282296	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282297	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282298	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282299	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282300	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282301	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282302	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282303	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282304	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282305	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282306	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282307	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282308	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282309	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282310	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282311	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282312	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282313	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282314	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282315	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282316	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282317	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282318	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282319	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
HARRI	CDC	2282320	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
HARRI	CDC	2282321	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
HARRI	CDC	2282322	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282323	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282324	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282325	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
HARRI	CDC	2282326	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282327	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282328	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282329	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282330	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282331	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
HARRI	CDC	2282332	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
HARRI	CDC	2282333	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
HARRI	CDC	2282334	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
HARRI	CDC	2282445	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282446	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282447	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282448	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282449	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282450	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282451	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282452	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282453	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282454	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282455	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282456	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282457	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282458	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282459	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282460	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282461	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282462	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282463	NTS 32L02	Apr. 3, 2024	Wallbridge	Fr. Nevada Corp. NSR 1%	55.34
HARRI	CDC	2282464	NTS 32L02	Apr. 3, 2024	Wallbridge	·	55.32
HARRI	CDC	2282465	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282466	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282467	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282468	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282469	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282470	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282471	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282472	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
HARRI	CDC	2282473	NTS 32L02	Apr. 3, 2024	Wallbridge		55.32
HARRI	CDC	2282474	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282475	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282476	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282477	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282478	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282479	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282480	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282481	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282482	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282483	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282484	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282612	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282613	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282614	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282615	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282616	NTS 32L02	Apr. 3, 2024	Wallbridge		55.37
HARRI	CDC	2282617	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282618	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282619	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282620	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282621	NTS 32L02	Apr. 3, 2024	Wallbridge		55.36
HARRI	CDC	2282622	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282623	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282624	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282625	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282626	NTS 32L02	Apr. 3, 2024	Wallbridge		55.35
HARRI	CDC	2282627	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282628	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282629	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282630	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282631	NTS 32L02	Apr. 3, 2024	Wallbridge		55.34
HARRI	CDC	2282632	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282634	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282635	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282636	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282637	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
HARRI	CDC	2282638	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282640	NTS 32L02	Apr. 3, 2024	Wallbridge		55.33
HARRI	CDC	2282641	NTS 32L02	Apr. 3, 2024	Wallbridge		55.31
HARRI	CDC	2282642	NTS 32L02	Apr. 3, 2024	Wallbridge		55.31
HARRI	CDC	2282643	NTS 32L02	Apr. 3, 2024	Wallbridge		55.31
HARRI	CDC	2282644	NTS 32L02	Apr. 3, 2024	Wallbridge		55.31
HARRI	CDC	2286473	NTS 32E15	Apr. 17, 2024	Wallbridge		49.20
HARRI	CDC	2286474	NTS 32E15	Apr. 17, 2024	Wallbridge		45.35
HARRI	CDC	2382143	NTS 32L02	Mar. 11, 2024	Wallbridge		55.35
HARRI	CDC	2395083	NTS 32E15	Nov. 28, 2022	Wallbridge		55.38
HARRI	CDC	2395084	NTS 32E15	Nov. 28, 2022	Wallbridge		55.38
HARRI	CDC	2395085	NTS 32E15	Nov. 28, 2022	Wallbridge		55.37
HARRI	CDC	2395086	NTS 32E15	Nov. 28, 2022	Wallbridge		55.37
HARRI	CDC	2435832	NTS 32L02	Jan. 13, 2025	Wallbridge		55.37
HARRI	CDC	2435833	NTS 32L02	Jan. 13, 2025	Wallbridge		55.37
HARRI	CDC	2435834	NTS 32L02	Jan. 13, 2025	Wallbridge		55.36
HARRI	CDC	2435835	NTS 32L02	Jan. 13, 2025	Wallbridge		55.36
HARRI	CDC	2435836	NTS 32L02	Jan. 13, 2025	Wallbridge		55.35
HARRI	CDC	2499810	NTS 32L02	Aug. 13, 2024	Wallbridge		55.33
HARRI	CDC	2499811	NTS 32L02	Aug. 13, 2024	Wallbridge		55.33
HARRI	CDC	2511244	NTS 32E15	Jan. 31, 2025	Wallbridge		55.39
HARRI	CDC	2511245	NTS 32E15	Jan. 31, 2025	Wallbridge		55.38
HARRI	CDC	2511246	NTS 32E15	Jan. 31, 2025	Wallbridge		55.38
HARRI	CDC	2511247	NTS 32E15	Jan. 31, 2025	Wallbridge		55.38
HARRI	CDC	2541238	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541239	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541240	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541241	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541242	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541243	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541244	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541245	NTS 32L02	Jul. 1, 2023	Wallbridge		55.32
HARRI	CDC	2541246	NTS 32L02	Jul. 1, 2025	Wallbridge		55.32
HARRI	CDC	2541247	NTS 32L02	Jul. 1, 2025	Wallbridge		55.32
HARRI	CDC	2541248	NTS 32L02	Jul. 1, 2025	Wallbridge		55.32
HARRI	CDC	2541249	NTS 32L02	Jul. 1, 2025	Wallbridge		55.32
HARRI	CDC	2541250	NTS 32L02	Jul. 1, 2025	Wallbridge		55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
HARRI	CDC	2541251	NTS 32L02	Jul. 1, 2025	Wallbridge		55.31
HARRI	CDC	2541252	NTS 32L02	Jul. 1, 2025	Wallbridge		55.31
HARRI	CDC	2543126	NTS 32E15	Sep. 3, 2025	Wallbridge		55.39
HARRI Sum							9060.64
MARTINIERE	CDC	2089671	NTS 32L02	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2089674	NTS 32L02	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089675	NTS 32L02	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089676	NTS 32L02	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089677	NTS 32L02	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089678	NTS 32L03	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2089679	NTS 32L03	Jun. 4, 2024	Wallbridge		55.33
MARTINIERE	CDC	2089680	NTS 32L03	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089681	NTS 32L03	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089682	NTS 32L03	Jun. 4, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089683	NTS 32L03	Jun. 4, 2024	Wallbridge		55.33
MARTINIERE	CDC	2089684	NTS 32L03	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089685	NTS 32L03	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089686	NTS 32L03	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089687	NTS 32L03	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089688	NTS 32L03	Jun. 4, 2024	Wallbridge		55.32
MARTINIERE	CDC	2089689	NTS 32L03	Jun. 4, 2024	Wallbridge		55.31
MARTINIERE	CDC	2089690	NTS 32L03	Jun. 4, 2024	Wallbridge		55.31
MARTINIERE	CDC	2089691	NTS 32L03	Jun. 4, 2024	Wallbridge		55.31
MARTINIERE	CDC	2089692	NTS 32L03	Jun. 4, 2024	Wallbridge		55.30
MARTINIERE	CDC	2089693	NTS 32L03	Jun. 4, 2024	Wallbridge		55.30
MARTINIERE	CDC	2089694	NTS 32L03	Jun. 4, 2024	Wallbridge		55.30
MARTINIERE	CDC	2089695	NTS 32L03	Jun. 4, 2024	Wallbridge		55.29
MARTINIERE	CDC	2089696	NTS 32L03	Jun. 4, 2024	Wallbridge		55.29
MARTINIERE	CDC	2089697	NTS 32L03	Jun. 4, 2024	Wallbridge		55.29
MARTINIERE	CDC	2089698	NTS 32L03	Jun. 4, 2024	Wallbridge		55.29
MARTINIERE	CDC	2089699	NTS 32L03	Jun. 4, 2024	Wallbridge		55.28
MARTINIERE	CDC	2089700	NTS 32L03	Jun. 4, 2024	Wallbridge		55.27
MARTINIERE	CDC	2089883	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2089884	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089885	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089887	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
MARTINIERE	CDC	2089892	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2089893	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089895	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089897	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089898	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089899	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089900	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089901	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089902	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089903	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089904	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2089905	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2089906	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2089907	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2089908	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2089909	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2089910	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2089911	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2089912	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2089913	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2089914	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089915	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089916	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089917	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089918	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2089919	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089920	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089921	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089924	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089925	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2089928	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.28
MARTINIERE	CDC	2089929	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.28
MARTINIERE	CDC	2089930	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.28
MARTINIERE	CDC	2089934	NTS 32L03	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.27
MARTINIERE	CDC	2089957	NTS 32L02	Jun. 5, 2024	Wallbridge		55.34
MARTINIERE	CDC	2089958	NTS 32L02	Jun. 5, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2269086	NTS 32L02	Sep. 21, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
MARTINIERE	CDC	2269087	NTS 32L02	Sep. 21, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.35
MARTINIERE	CDC	2269088	NTS 32L02	Sep. 21, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2269089	NTS 32L02	Sep. 21, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2283991	NTS 32L03	May. 1, 2024	Wallbridge	Fr. Nevada Corp. NSR 2%	55.28
MARTINIERE	CDC	2284009	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284010	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284011	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284012	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284013	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284014	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284015	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284016	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2284017	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2284018	NTS 32L02	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.29
MARTINIERE	CDC	2284019	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284020	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284021	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284022	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284023	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284024	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284025	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284026	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284027	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284028	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.32
MARTINIERE	CDC	2284029	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284030	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284031	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284032	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.31
MARTINIERE	CDC	2284033	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2284034	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2284035	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284036	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.34
MARTINIERE	CDC	2284037	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.33
MARTINIERE	CDC	2284038	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	55.30
MARTINIERE	CDC	2284049	NTS 32L03	Apr. 9, 2023	Wallbridge	Fr. Nevada Corp. NSR 2%	51.45
MARTINIERE Sum							5749.12

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded holder	Agreements & Other Interests	На
NANTEL	CDC	2395337	NTS 32E16	Dec. 2, 2024	Wallbridge		55.49
NANTEL	CDC	2395338	NTS 32E16	Dec. 2, 2024	Wallbridge		55.48
NANTEL	CDC	2395339	NTS 32E16	Dec. 2, 2024	Wallbridge		55.48
NANTEL	CDC	2395340	NTS 32E16	Dec. 2, 2024	Wallbridge		55.48
NANTEL Sum							221.93
				·			
Grand Total							83,082.11